matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisReihenentwicklung Tangens
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Reihenentwicklung Tangens
Reihenentwicklung Tangens < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihenentwicklung Tangens: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:06 Sa 16.05.2009
Autor: steppenhahn

Aufgabe
[Dateianhang nicht öffentlich]

Hallo!

Zu der Aufgabe oben habe ich einige Fragen:
1. Es irritiert mich etwas, dass ich den Konvergenzradius bestimmen soll, bevor ich überhaupt die Reihenentwicklung gemacht habe. Gibt es da irgendwelche Sätze, die mir schon vorher eine Prognose ermöglichen? (Ich vermute ja, dass der Konvergenzradius [mm] $\bruch{\pi}{2}$ [/mm] oder so ist, wenn ich an den reellen Tangens denke).

2.

$f(z) = [mm] \tan(z)$ [/mm]
$f(0) = 0$

$f'(z) = [mm] 1+\tan^{2}(z)$ [/mm]
$f'(0) = 1$

$f''(z) = [mm] 2*\tan(z)*(1+\tan^{2}(z))$ [/mm]
$f''(0) = 0$

$f'''(z) = [mm] 2*(1+\tan^{2}(z))^{2}+4*\tan^{2}(z)*(1+\tan^{2}(z))$ [/mm]
$f'''(0) = 2$

$f''''(z) = [mm] 8*\tan(z)*(1+\tan^{2}(z))^{2}+\left(8*\tan(z)*(1+\tan^{2}(z))^{2} + 8*\tan^{3}(z)*(1+\tan^{2}(z))\right)$ [/mm]
$f''''(z) = 0$

Also folgende Reihenglieder:

[mm] $\tan(z) \approx [/mm] z + [mm] \bruch{2}{3!}*z^{3} [/mm] =  z + [mm] \bruch{1}{3}*z^{3}$ [/mm]

Stimmt das? Gibt es einfachere Wege, auf die Reihenglieder zu kommen als die Funktion 4-mal abzuleiten?

Viele Grüße und danke für eure Hilfe, Stefan.

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Reihenentwicklung Tangens: Rechnung okay
Status: (Antwort) fertig Status 
Datum: 09:46 Sa 16.05.2009
Autor: Infinit

Hallo Stefan,
die Rechnung ist okay, eine einfachere Methode wüsste ich jetzt auch nicht. Die Reihenentwicklung macht Schwierigkeiten, wenn Du auf die Nullstellen des Cosinus triffst. Es gibt also Pole an den Stellen
$$ z = [mm] (\bruch{1}{2} [/mm] + k) [mm] \cdot \pi \, [/mm] . $$
Viele Grüße,
Infinit

Bezug
                
Bezug
Reihenentwicklung Tangens: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:53 Sa 16.05.2009
Autor: steppenhahn

Hallo und danke für deine Antwort!

Kann ich dann daraus schließen, dass der Konvergenzradius [mm] \bruch{\pi}{2} [/mm] ist?

Vielen Dank und viele Grüße, Stefan.

Bezug
                        
Bezug
Reihenentwicklung Tangens: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Sa 16.05.2009
Autor: Denny22


> Hallo und danke für deine Antwort!

Hallo, ich habe hier vor zwei Wochen etwa die gleiche Frage gestellt. Bloss zum $tanh$, der bekanntlich denselben Konvergenzradius bei $z=0$ besitzt.

https://matheraum.de/read?t=545648

> Kann ich dann daraus schließen, dass der Konvergenzradius
> [mm]\bruch{\pi}{2}[/mm] ist?

Ja kannst Du. Aber eine Begründung fällt mir gerade nicht ein. Zumindest kann er aufgrund der Pole nicht größer sein.

> Vielen Dank und viele Grüße, Stefan.

Gruß Denny


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]