matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihen und Logarithmus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Reihen und Logarithmus
Reihen und Logarithmus < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen und Logarithmus: Konvergenz untersuchen
Status: (Frage) beantwortet Status 
Datum: 19:12 Di 29.05.2007
Autor: BigBoomer

Aufgabe
Mittels des Cauchy-Kriteriums untersuchen Sie die folgende Reihe auf Konvergenz:

[mm]\sum_{n=1}^{\infty} ln( 1+ \bruch{1}{n})[/mm]

Ich komme mit dieser Aufgabe nicht so ganz klar. Ich habe schon versucht, die Logarithmussätze anzuwenden, aber der entscheidende Schritt entzieht sich mir. Ich habe schon folgendes gemacht:

= ln( ( 1 + [mm] \bruch{1}{n+1} [/mm] ) * ( 1 + [mm] \bruch{1}{n+2} [/mm] ) * [mm] \cdots [/mm] * ( 1 + [mm] \bruch{1}{m} [/mm] ) )

Das Problem ist jetzt, dass ich es nicht gescheit nach oben abschätzen kann, um weiter vorzugehen. Ich muss ja nur zeigen, dass die Reihe konvergent ist, ich muss nicht die Summe bilden. Alle anderen Aufgaben haben mir keine Probleme bereitet.

Danke im voraus :-)

Gruß
BigBoomer

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Reihen und Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Di 29.05.2007
Autor: leduart

Hallo
> Mittels des Cauchy-Kriteriums untersuchen Sie die folgende
> Reihe auf Konvergenz:
>
> [mm]\sum_{n=1}^{\infty} ln( 1+ \bruch{1}{n})[/mm]
>  Ich komme mit
> dieser Aufgabe nicht so ganz klar. Ich habe schon versucht,
> die Logarithmussätze anzuwenden, aber der entscheidende
> Schritt entzieht sich mir. Ich habe schon folgendes
> gemacht:
>  
> = ln( ( 1 + [mm]\bruch{1}{n+1}[/mm] ) * ( 1 + [mm]\bruch{1}{n+2}[/mm] ) *
> [mm]\cdots[/mm] * ( 1 + [mm]\bruch{1}{m}[/mm] ) )

Ich versteh nicht, was dieses Produkt mit dem Cauchykriterium zu tun hat! Vielleicht siehst du das erst nochmal nach, bevor du an so ne Aufgabe gehst.
es heisst dochfür jedes [mm] \varepsilon>0 [/mm] gibt es ein N sodass für alle n,m>N  [mm] |an-am|<\varepsilon [/mm]
Gruss leduart.
  

> Das Problem ist jetzt, dass ich es nicht gescheit nach oben
> abschätzen kann, um weiter vorzugehen. Ich muss ja nur
> zeigen, dass die Reihe konvergent ist, ich muss nicht die
> Summe bilden. Alle anderen Aufgaben haben mir keine
> Probleme bereitet.
>  
> Danke im voraus :-)
>  
> Gruß
>  BigBoomer
>  
> PS: Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]