matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihen Konvergenz, partial.Sum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Reihen Konvergenz, partial.Sum
Reihen Konvergenz, partial.Sum < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen Konvergenz, partial.Sum: tipp,Rückfrage,Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:51 Sa 07.05.2022
Autor: segelspringer

Aufgabe
Hallo,

da ich neu hier bin , ist mir die Codierung mit Latex noch nicht so geläufig und in der Aufgabenstellung sind eine schwierige Zeichen drin.
Deshalb habe ich hier ein Bild der Aufgabenstellung hochgeladen
[Dateianhang nicht öffentlich]

Ich habe mich nur mit dem Aufgabenteil a) beschäftigt.

dort wollte ich das Cauchy Kriterium verwenden, aber ich weis nicht genau, wie ich  es auf die Aufhabe anwende sollen.
Hier ist das Kriterium selbst $ [mm] \forall \epsilon >0\,\exists N\in \mathbb [/mm] {N} [mm] \,\forall n\geq m\geq N:\left|\sum _{k=m}^{n}a_{k}\right|<\epsilon [/mm] $

Sage ich jetzt [mm] $|s_m|:= |\sum_{n=1}^{m} a_n| [/mm] < [mm] \epsilon$ [/mm] und bin fertig?

Danke für eure Hilfe und Input!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: PNG) [nicht öffentlich]
        
Bezug
Reihen Konvergenz, partial.Sum: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 Sa 07.05.2022
Autor: Gonozal_IX

Hiho,

> da ich neu hier bin , ist mir die Codierung mit Latex noch
> nicht so geläufig und in der Aufgabenstellung sind eine
> schwierige Zeichen drin.

wie wäre es mal mit üben und versuchen? Scheint ein grundsätzliches Problem bei dir zu sein…

> dort wollte ich das Cauchy Kriterium verwenden, aber ich
> weis nicht genau, wie ich  es auf die Aufhabe anwende
> sollen.
>  Hier ist das Kriterium selbst [mm]\forall \epsilon >0\,\exists N\in \mathbb {N} \,\forall n\geq m\geq N:\left|\sum _{k=m}^{n}a_{k}\right|<\epsilon[/mm]

> Sage ich jetzt [mm]|s_m|:= |\sum_{n=1}^{m} a_n| < \epsilon[/mm] und
> bin fertig?

Dann kannst du sagen, allerdings ist das weder noch korrekt, noch bist du dann fertig.

1.) Du sollst keine Aussage über die Reihe [mm] $\sum_{n=1}^\infty a_n$ [/mm] treffen, sondern über [mm] $\sum_{n=1}^\infty a_nf_n$ [/mm]

2.) Die Reihe [mm] $\sum_{n=1}^\infty a_n$ [/mm] konvergiert im Allgemeinen gar nicht, demzufolge gilt [mm]|s_m|:= |\sum_{n=1}^{m} a_n| < \epsilon[/mm] sowieso nicht und wäre auch nicht das Cauchy-Kriterium angewand auf obige Reihe.

3.) Wie wäre es mal damit den Hinweis zu verwenden?

Heißt zusammengefasst:
i) Formuliere das Cauchy-Kriterium korrekt für die Reihe  [mm] $\sum_{n=1}^\infty a_nf_n$ [/mm]

ii) Zeige i) mit Hilfe des Hinweises. Nutze zusätzlich die Dreiecksungleichung und die gegebenen Voraussetzungen.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]