matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Reihen
Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 Mo 24.01.2011
Autor: Shoegirl

Aufgabe
Geben Sie eine Reihe sn= [mm] \summe_{i=0}^{n-1} [/mm] = bi an, welche gegen eine vorgegebene Zahl b>1 konvergiert.

Ich weiß nicht so recht ob ich die Aufgabe richtig verstanden habe...
Also mein Vorschlag wäre jetzt zb. einfach ,man könnte für n zb. 50 nehmen... und dann wie in einer Aufgabe vorher die Formel:
S_50 = (1-(0,07)^50)/ (1-0,7) - (219/100) = 1,1433

Geht das so?

        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 Mo 24.01.2011
Autor: rainerS

Hallo!

> Geben Sie eine Reihe sn= [mm]\summe_{i=0}^{n-1}[/mm] = bi an, welche
> gegen eine vorgegebene Zahl b>1 konvergiert.
>  Ich weiß nicht so recht ob ich die Aufgabe richtig
> verstanden habe...
>  Also mein Vorschlag wäre jetzt zb. einfach ,man könnte
> für n zb. 50 nehmen... und dann wie in einer Aufgabe
> vorher die Formel:
>  S_50 = (1-(0,07)^50)/ (1-0,7) - (219/100) = 1,1433
>  
> Geht das so?  

Nicht ganz. Denn hier ist nicht danach gefragt, ob du eine endliche Summe finden kannst, sondern eine unendliche Summe, deren Grenzwert gerade gleich b ist.

Also nicht

[mm] \summe_{i=0}^n q^i = b [/mm]

sondern

[mm] \summe_{i=0}^{\infty}=\limes_{n\to\infty}\summe_{i=0}^n q^i = b [/mm]

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]