matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Reihen
Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:19 Mo 17.11.2008
Autor: Shelli

Aufgabe
a) Man zeige, dass für alle [mm] m\in\IN [/mm] gilt:

[mm] (1+\bruch{1}{m})^{m} \le \summe_{n=0}^{\infty}\bruch{1}{n!}, [/mm]

[mm] \limes_{n\rightarrow\infty} (1+\bruch{1}{n})^{n} \ge \summe_{k=0}^{m} \bruch{1}{k!} [/mm]

und folgere hieraus, dass

[mm] e:=\limes_{n\rightarrow\infty} (1+\bruch{1}{n})^{n} [/mm] = [mm] \summe_{n=o}^{\infty} \bruch{1}{n!} [/mm] =: exp(1)

b) Für alle [mm] m\in\IN [/mm] gilt 0 < [mm] e-\summe_{k=0}^{m} \bruch{1}{k!} [/mm] < [mm] \bruch{1}{mm!} [/mm]

c) Folgere daraus, dass e irrational ist.

Analysis ist echt nicht mein Lieblingsfach ;-)

aber hier mal meinen bescheidenen Ansatz:

[mm] (1+\bruch{1}{m})^{m} [/mm] = [mm] \summe_{k=0}^{n} \vektor{n \\ k}\bruch{1}{n^{k}} \le \summe_{n=0}^{\infty}\bruch{1}{n!} [/mm]

Ein paar Tipps wären super! Ich habe leider bis jetzt noch gar keine Ahnung wie ich rangehen soll.

        
Bezug
Reihen: Variablen-Chaos
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:33 Mo 17.11.2008
Autor: Loddar

Hallo Shelli!


Bitte überarbeite Deine Frage und beseitige dieses Variablen-Chaos. Da springst Du gerade laufend zwischen $m_$ und $n_$ hin und her ... [aeh]

Okay, okay ... ich nehme alles zurück und behaupte das Gegenteil! Ich wurde auch von anderer Seite auf meine Fehleinschätzung hingewiesen.


Gruß
Loddar


Bezug
                
Bezug
Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:07 Di 18.11.2008
Autor: Shelli

Ja das ist aber leider die Aufgabe. Ich springe nicht mit den Variablen hin und her. Das ist leider so. Ich habe die Aufgabe ja nicht gemacht. ;-)

Kann mir trotzdem jemand helfen?

Bezug
        
Bezug
Reihen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:39 Mi 19.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]