matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Reihen
Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihen: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:44 Mi 05.02.2014
Autor: Babybel73

Hallo zusammen

Kann mir jemand von euch bei folgender Reihe weiterhelfen?

[mm] \summe_{n=1}^{\infty} \bruch{sin(n)}{n!} [/mm]

Wie kann ich da untersuchen ob sie abs. konvergent, konvergent oder divergent ist?

Vielen Dank

        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Mi 05.02.2014
Autor: reverend

Hallo Babybel,

so ein Sinus irritiert meistens nur...

> Kann mir jemand von euch bei folgender Reihe weiterhelfen?
>
> [mm]\summe_{n=1}^{\infty} \bruch{sin(n)}{n!}[/mm]
>  
> Wie kann ich da untersuchen ob sie abs. konvergent,
> konvergent oder divergent ist?

Ich würde immer erstmal auf absolute Konvergenz untersuchen. Manchmal ist man dann ja schon fertig.

Generell gilt hier aber [mm] -1\le\sin{n}\le{1}, [/mm] also auch [mm] |\sin{n}|\le{1}. [/mm]

Das sollte doch schon weiterhelfen. ;-)

Ach so: Weißt Du, was [mm] \summe_{n=0}^{\infty}\bruch{1}{n!} [/mm] ist? Das würde natürlich auch helfen...

Grüße
reverend

Bezug
                
Bezug
Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:17 Mi 05.02.2014
Autor: Babybel73

Hallo reverend

Ah so... na dann kann ich ja:
[mm] \summe_{n=1}^{\infty} [/mm] | [mm] \bruch{sin(n)}{n!} [/mm] | = [mm] \summe_{n=1}^{\infty} \bruch{|sin(n)|}{n!} \le \summe_{n=1}^{\infty} \bruch{1}{n!} [/mm] = e
Also nach Majorantenkriterium absolut konvergent!
Muss ich jetzt noch [mm] \summe_{n=1}^{\infty} [/mm] auf [mm] \summe_{n=0}^{\infty} [/mm] anpassen? also das wäre ja dann einfach e-1, oder?



Bezug
                        
Bezug
Reihen: Fehler selber bemerkt
Status: (Antwort) fertig Status 
Datum: 21:20 Mi 05.02.2014
Autor: Loddar

Hallo Babybel!


> Ah so... na dann kann ich ja:
> [mm]\summe_{n=1}^{\infty}[/mm] | [mm]\bruch{sin(n)}{n!}[/mm] | = [mm]\summe_{n=1}^{\infty} \bruch{|sin(n)|}{n!} \le \summe_{n=1}^{\infty} \bruch{1}{n!}[/mm]

[ok]


> = e

Das stimmt nicht ganz, wie Du unten bereits selber festgestellt hast.


> Also nach Majorantenkriterium absolut konvergent!

[ok]


> Muss ich jetzt noch [mm]\summe_{n=1}^{\infty}[/mm] auf
> [mm]\summe_{n=0}^{\infty}[/mm] anpassen? also das wäre ja dann
> einfach e-1, oder?

[ok] Dann schreibe das auch oben.


Gruß
Loddar

Bezug
                                
Bezug
Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 Mi 05.02.2014
Autor: Babybel73

Hei, danke für eure Hilfe! Ihr seit super! :)

Bezug
                                        
Bezug
Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:09 Mi 05.02.2014
Autor: reverend


> Ihr seit super! :)  

Mönsch, "seid" mit D wie Domade, tu Tussel! ;-)

Übrigens hat Richie Recht, und Du auch, und Loddar erst, und überhaupt sind wir alle eine große Familie.

Hm, vielleicht war da doch was im Tee.

Grüße
rev

Bezug
        
Bezug
Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Mi 05.02.2014
Autor: Richie1401

Hallo Babybel,

> Hallo zusammen
>
> Kann mir jemand von euch bei folgender Reihe weiterhelfen?
>
> [mm]\summe_{n=1}^{\infty} \bruch{sin(n)}{n!}[/mm]
>  
> Wie kann ich da untersuchen ob sie abs. konvergent,
> konvergent oder divergent ist?

Hier ist eben wichtig zu wissen, dass jede absolut konvergente Reihe auch konvergent ist.

Im übrigen interessiert der Wert der Reihe sicherlich gar nicht. Von daher ist die Korrektor, die du bei einem deiner Beiträge vorgenommen hast, im Grund irrelevant. Da reicht am Ende auch ein [mm] <\infty. [/mm]

Allgemein sollte man sich also noch merken, wie man den Sinus und Kosinus abschätzen kann. Solche Abschätzungen werden sehr häufig benutzt.

Schönen Abend!

>  
> Vielen Dank


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]