matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihe und Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Reihe und Konvergenz
Reihe und Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe und Konvergenz: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:56 So 29.05.2011
Autor: dimi727

Aufgabe
Untersuchen Sie die Existenz der beiden Grenzwerte und bestimmen Sie gegebenenfalls ihren Wert:

[mm] \limes_{m\rightarrow\infty}\summe_{n=1}^{\infty}\bruch{m}{(m+n)*(m+n+1)} [/mm]

Hallo Leude,

zur oberen Aufgabenstellung :

Ich weiß,dass [mm] \summe_{n=1}^{\infty}\bruch{m}{(m+n)*(m+n+1)} [/mm] = [mm] \bruch{m}{m+1} [/mm] konvergiert, wie beweise ich das? Der limes von [mm] \bruch{m}{m+1} [/mm] ist 1, aber ich muss halt dadrauf kommen :)

Bin Dankbar für Tipps und Ratschläge!

        
Bezug
Reihe und Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 So 29.05.2011
Autor: abakus


> Untersuchen Sie die Existenz der beiden Grenzwerte und
> bestimmen Sie gegebenenfalls ihren Wert:
>  
> [mm]\limes_{m\rightarrow\infty}\summe_{n=1}^{\infty}\bruch{m}{(m+n)*(m+n+1)}[/mm]
>  Hallo Leude,
>  
> zur oberen Aufgabenstellung :
>  
> Ich weiß,dass
> [mm]\summe_{n=1}^{\infty}\bruch{m}{(m+n)*(m+n+1)}[/mm] =
> [mm]\bruch{m}{m+1}[/mm] konvergiert, wie beweise ich das? Der limes
> von [mm]\bruch{m}{m+1}[/mm] ist 1, aber ich muss halt dadrauf kommen
> :)
>  
> Bin Dankbar für Tipps und Ratschläge!

Hallo,
ich bin mir nicht sicher, ob ich dein Problem erfasst habe.
Fragst du wirklich nur, warum  [mm]\bruch{m}{m+1}[/mm] gegen 1 konvergiert, oder willst du doch wissen, warum die Summe gegen diesen Wert strebt?
Im ersten Fall ist es einfach:
Schreibe  [mm]\bruch{m}{m+1}[/mm] als  [mm]\bruch{m*1}{m(1+ \bruch{1}{m})}[/mm] und kürze m raus. Dass [mm] \bruch{1}{m} [/mm] gegen Null strebt, sollte man als bekannt voraussetzen können...
Sollte deine Frage doch in die zweite Richtung gehen:
Es gilt [mm] \bruch{m}{(m+n)*(m+n+1)}=\bruch{m}{(m+n)}-\bruch{m}{(m+n+1)}, [/mm] was zu einer schönen Teleskopsumme führt.

Was ist in der Aufgabenstellung mit "Existenz [mm] \red{beider} [/mm] Grenzwerte" gemeint?
Gruß Abakus


Bezug
                
Bezug
Reihe und Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:24 So 29.05.2011
Autor: dimi727

Vielen Danke für die Antwort :)

Mit beiden Grenzwerten ist gemeint,dass man bei der Aufgabe zwei Reihen untersuchen muss, ich aber nur nen Tipp zu dieser brauchte.

Ich hatte schon eine Ahnung,dass es was mit der Teleskopreihe zu tun hatte, wegen dem m/m+1 , nur hab ich irgendwie in dem Fall die klare Antwort iwie nicht gesehen, danke dafür! Und ja, ich wollte nur zweiteres wissen,das erstere ist unwichtig und einfach :)

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]