matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihe, Summe in Intervall
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Reihe, Summe in Intervall
Reihe, Summe in Intervall < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe, Summe in Intervall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:18 Mo 20.04.2015
Autor: sissile

Aufgabe
Beweisen Sie, dass die Reihe [mm] \sum_{n=0}^\infty 2^{-n} cos(\pi [/mm] n/2) konvergiert und dass ihre Summe s zum Intervall (3/4, 13/16) gehört.



Hallo,
Konvergenz: [mm] |2^{-n} cos(\pi [/mm] n/2)| [mm] \le |2^{-n}| [/mm] und [mm] \sum_{n=0}^\infty (\frac{1}{2})^n [/mm] konvergente Majorante.

Mein Weg wäre über: [mm] e^{i x} [/mm] = cos(x)+isin(x)
[mm] \sum_{n=0}^\infty 2^{-n} cos(\pi [/mm] n/2) = [mm] \sum_{n=0}^\infty \frac{Re(e^{i n \pi /2})}{2^n} =\sum_{n=0}^\infty Re(\frac{(e^{i \pi /2})^n}{2^n})=Re(\sum_{n=0}^\infty \frac{(e^{i \pi /2})^n}{2^n}) [/mm]
= [mm] Re(\frac{1}{1-\frac{e^{i\pi/2}}{2}})= Re[\frac{1}{1-\frac{cos(\pi/2)+i sin(\pi/2)}{2}}]=Re[\frac{1}{1-\frac{i}{2}}]=Re[\frac{2}{2-i}]= Re[\frac{4+2i}{5}]=4/5 [/mm]
4/5 [mm] \in [/mm] (3/4, 13/16) [mm] \Box [/mm]

Frage: Gibt es einen anderen Lösungsweg der hier gewollt wird, da das mit dem Intervall angegeben ist? Ich müsste ja nicht unbedingt der Grenzwert finden, sondern nur dass er im Intervall liegt.
Würde gerne wissen auf welchen Lösungsweg der Aufgabensteller es hier abgesehen hat mit dem komischen Intervall!

LG,
sissi

EDIT: Intervall lautet (3/4, 13/16)

        
Bezug
Reihe, Summe in Intervall: Antwort
Status: (Antwort) fertig Status 
Datum: 21:01 Mo 20.04.2015
Autor: DieAcht

Hallo sissile!


Dein Beweis ist bis auf die letzte Zeile richtig. Ich kann die
Angabe des Intervalls nicht ansatzweise nachvollziehen, denn:

1. [mm] (\frac{3}{4},\frac{3}{16})=\emptyset. [/mm] (Daher der Fehler deiner letzten Zeile. ;-))

2. Auch mit [mm] (\frac{3}{16},\frac{3}{4})=:I [/mm] erhalten wir wegen [mm] $\frac{4}{5}\not\in [/mm] I$ einen Widerspruch zur Aufgabenstellung.


Gruß
DieAcht

Bezug
                
Bezug
Reihe, Summe in Intervall: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:34 Di 21.04.2015
Autor: sissile

Sry, es soll heißen (3/4, 13/16).
Habe die 1 vergessen!!:O

LG,
sissi

Bezug
        
Bezug
Reihe, Summe in Intervall: Antwort
Status: (Antwort) fertig Status 
Datum: 05:21 Di 21.04.2015
Autor: fred97

Das Intervall (3/4, 3/16) ist nicht komisch, denn es ist kein Intervall !

Anderer Lösungsweg: für ungerades n ist $cos(n* [mm] \bruch{\pi}{2})=0.$ [/mm]


Somit:

$ [mm] \sum_{n=0}^\infty 2^{-n} [/mm] cos(n* [mm] \bruch{\pi}{2})= \sum_{k=0}^\infty \bruch{1}{2^{2k}}*cos(k [/mm] * [mm] \pi)= \sum_{k=0}^\infty \bruch{1}{4^{k}}*(-1)^k= \sum_{k=0}^\infty(- \bruch{1}{4})^k$ [/mm]

FRED

Bezug
                
Bezug
Reihe, Summe in Intervall: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:41 Di 21.04.2015
Autor: sissile

Vielen Dank für den eleganten Lösungsweg! Ist wahrscheinlich auch nicht der, den der Aufgabensteller im Sinn hatte aber vielen lieben Dank.
Ich habe übrigens das Intervall nun geändert. Da hatte sich nämlich ein Tippfehler eingeschlichen.

LG,
sissi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]