matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihe Konvergenz von Reihen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Reihe Konvergenz von Reihen
Reihe Konvergenz von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe Konvergenz von Reihen: Vorgehensweise
Status: (Frage) beantwortet Status 
Datum: 17:34 Mo 21.05.2007
Autor: DER-Helmut

Aufgabe
Berechnen Sie den Wert  der folgende Reihe:
[mm] \summe_{k=1}^{\infty} \bruch{1}{k^2+k} [/mm]
Hinweis: Zeigen Sie, dass die Partialsummen [mm] s_{n}=\summe_{k=1}^{\infty} \bruch{1}{k^2+k} [/mm] eschrieben werden können als [mm] s_{n}=\bruch{1}{n+1} [/mm]


Hallöle,

habe gerade hier dei Aufgabe vor mir, aber komm auf keinen Lösungsweg mit dem Hinweis.... ich hätte jetzt das Quotientenkriterium bzw. Wurzelkriterium, hier ersteres, angewendet, aber was soll der Hinweis?

Thx for help

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Reihe Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Mo 21.05.2007
Autor: schachuzipus

Hallo  Helmut,

jo  die Konvergenz kannste mit den üblichen Kriterien zeigen.

Um aber den GW, also den [mm] \underline{Wert} [/mm] der Reihe [mm] $\sum\limits_{k=1}^{\infty}\frac{1}{k^2+k}$ [/mm] zu bestimmen, empfiehlt sich der Tipp mit den Partialsummen.

Mache zunächst mal eine Partialbruchzerlegung von [mm] $\frac{1}{k^2+k}=\frac{1}{k(k+1)}=\frac{A}{k}+\frac{B}{k+1}$ [/mm]

Damit kannste dann [mm] $\sum\limits_{k=1}^{\infty}\frac{1}{k^2+k}$ [/mm] schreiben als [mm] $\sum\limits_{k=1}^{\infty}\left(\frac{A}{k}+\frac{B}{k+1}\right)$ [/mm]

Dann betrachte mal die Partialsummen [mm] $s_n=\sum\limits_{K=1}^n\left(\frac{A}{k}+\frac{B}{k+1}\right)$ [/mm]

Du wirst sehen, dass das ne schöne Teleskopsumme ergibt, in der sich fast alle Summanden rausheben.

Mache dann den Grenzübergang [mm] $n\to\infty$ [/mm] und du erhältst den Reihenwert


Gruß

schachuzipus

Bezug
                
Bezug
Reihe Konvergenz von Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 Mo 21.05.2007
Autor: DER-Helmut

thx!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]