matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenReihe Grenzwert
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Reihe Grenzwert
Reihe Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reihe Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 Do 19.08.2010
Autor: zocca21

Aufgabe
Untersuchen sie auf Konvergenz und bestimmen sie gegebenenfalls den Grenzwert: [mm] \summe_{i=1}^{k} \bruch{1}{k^2 +k} [/mm]

[mm] \summe_{i=1}^{k} \bruch{1}{k^2 +k} [/mm] Also mit dem Majorantenkriterium kann ich ja die Konvergenz beweisen.

Wie komme ich aber nun auf den Grenzwert?

Ich habe mal den Term umgeformt:

[mm] \summe_{i=1}^{k} \bruch{1}{k} [/mm] - [mm] \bruch{1}{k+1} [/mm]

Leider seh ich auch hier noch nicht wie ich auf den Grenzwert kommen soll..

Vielen Dank

        
Bezug
Reihe Grenzwert: Teleskopsumme
Status: (Antwort) fertig Status 
Datum: 16:01 Do 19.08.2010
Autor: Roadrunner

Hallo zocca!


Schreibe Dir doch einfach mal die ersten Glieder der Reihe [mm] $\summe_{k=1}^{n}\left(\bruch{1}{k}-\bruch{1}{k+1}\right)$ [/mm] auf.
Dann sollte Dir auffallen, dass sich fast alle Summanden gegenseitig eliminieren und nur wenige Summanden verbleiben, dessen Grenzwert für [mm] $n\rightarrow\infty$ [/mm] schnell bestimmt werden kann.


Gruß vom
Roadrunner


Bezug
                
Bezug
Reihe Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Do 19.08.2010
Autor: zocca21

Aufgabe
[mm] \summe_{k=o}^{\infty} (-1)^k \bruch{ln(3)^k}{k!} [/mm]

Ja,super! Dann ist der Grenzwert 1..

Ich hab dann gleich noch eine Frage zu der anderen Reihe:

Hier muss ich doch über eine geschlossene Form auf den Grenzwert kommen..

Wie geh ich allgemein bei solchen Reihen vor? Immer schauen welche geschl Form ist ähnlich und was ist an meiner Reihe anders? Oder gibt es da irgendwelche Tricks?

Bezug
                        
Bezug
Reihe Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Do 19.08.2010
Autor: schachuzipus

Hallo zocca21,

> [mm]\summe_{k=o}^{\infty} (-1)^k \bruch{ln(3)^k}{k!}[/mm]
>  Ja,super!
> Dann ist der Grenzwert 1..
>  
> Ich hab dann gleich noch eine Frage zu der anderen Reihe:
>  
> Hier muss ich doch über eine geschlossene Form auf den
> Grenzwert kommen..
>  
> Wie geh ich allgemein bei solchen Reihen vor? Immer schauen
> welche geschl Form ist ähnlich und was ist an meiner Reihe
> anders? Oder gibt es da irgendwelche Tricks?

Die Aufgabensteller wollen dich ja nicht vor unlösbare Probleme stellen, sondern sehen, ob du auf bereits Bekanntes transferieren kannst.

Es ist (auch dir hoffentlich) bekannt, dass für alle $z$ gilt: [mm] $e^z=\sum\limits_{k=0}^{\infty}\frac{z^k}{k!}$ [/mm]


Kannst du das auf diese Aufgabe transferieren?

Gruß

schachuzipus


Bezug
                                
Bezug
Reihe Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:49 Do 19.08.2010
Autor: zocca21

Ja, das dachte ich mir schon, dass es diese Potenreihe ist.

Genau, das ist mein Problem...

[mm] z^k [/mm] ist ja in diesem Fall [mm] ln(3)^k *(-1)^k [/mm]

e^ln(3)*(-1) ?

Ist des dann 3^-1 und somit (1/3) oder was fürn Grenzwert erhalte ich hier?

Danke für die Mühe!



Bezug
                                        
Bezug
Reihe Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Do 19.08.2010
Autor: schachuzipus

Hallo nochmal,

> Ja, das dachte ich mir schon, dass es diese Potenreihe
> ist.
>  
> Genau, das ist mein Problem...
>  
> [mm]z^k[/mm] ist ja in diesem Fall [mm]ln(3)^k *(-1)^k[/mm] [ok]

bzw. [mm] $(-\ln(3))^k$ [/mm] oder per Loggesetz [mm] $\left(\ln\left(3^{-1}\right)\right)^k=\left(\ln\left(\frac{1}{3}\right)\right)^k$ [/mm]

>  
> e^ln(3)*(-1) ? [ok]
>  
> Ist des dann 3^-1 und somit (1/3) oder was fürn Grenzwert
> erhalte ich hier? [ok]

Is scho recht!

>  
> Danke für die Mühe!
>  
>  

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]