matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFormale SprachenReguläre Sprache+PumpingLemma
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Formale Sprachen" - Reguläre Sprache+PumpingLemma
Reguläre Sprache+PumpingLemma < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reguläre Sprache+PumpingLemma: Definition von Reg Sprachen
Status: (Frage) beantwortet Status 
Datum: 14:18 Sa 22.10.2011
Autor: Erbse

Aufgabe
Siehe unten.

Wir haben bei uns reguläre Sprachen folgendermaßen definiert:
1) L ={a} a [mm] \in [/mm] E
oder
2) L = [mm] \emptyset [/mm]
... und weitere

Wie kann ich dann bitte auf die Leere Menge das Pumping-Lemma anwenden?
Oder auf Punkt 2?
z.B. L = {a}
Dann müsste u,x = [mm] \varepsilon [/mm] v = a sein (geht ja sonst nicht anders?)
Aber u * [mm] v^{2} [/mm] * x = aa [mm] \not\in [/mm] L
Da muss doch irgendwas bei der Definition der regulären Sprachen nicht stimmen.

        
Bezug
Reguläre Sprache+PumpingLemma: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 Sa 22.10.2011
Autor: felixf

Moin!

> Siehe unten.
>  Wir haben bei uns reguläre Sprachen folgendermaßen
> definiert:

Naja, das ist jetzt keine Definition, sondern Beispiele fuer Sprachen, die die Definition erfuellen.

>  1) L ={a} a [mm]\in[/mm] E
>  oder
>  2) L = [mm]\emptyset[/mm]
>  ... und weitere
>  
> Wie kann ich dann bitte auf die Leere Menge das
> Pumping-Lemma anwenden?
>  Oder auf Punkt 2?
>  z.B. L = {a}
>  Dann müsste u,x = [mm]\varepsilon[/mm] v = a sein (geht ja sonst
> nicht anders?)
>  Aber u * [mm]v^{2}[/mm] * x = aa [mm]\not\in[/mm] L
>  Da muss doch irgendwas bei der Definition der regulären
> Sprachen nicht stimmen.

Das Pumping-Lemma sagt doch, dass man die Zerlegung nur fuer Worte bekommt, die eine gewisse Mindestlaenge ist. Wenn du die Mindestlaenge bei den obigen Sprachen als etwa 2 vorgibst, gibt es kein Wort welches die erfuellt, und somit auch kein Wort fuer welches die Pumping-Lemma-Bedingung gelten muss.

Und bei der leeren Sprache ist es noch einfacher: das Pumping-Lemma sagt ja, dass fuer jedes Wort in der Sprache mit bestimmten Anforderungen etwas gelten muss. Da es aber kein Wort gibt, ist es voellig egal was die Anforderungen oder Folgerungen sind: das Statement ist immer wahr.

LG Felix




Bezug
                
Bezug
Reguläre Sprache+PumpingLemma: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 Sa 22.10.2011
Autor: Erbse

Danke okey das macht sinn.
Das heißt, dass bei unendlichen regulären Sprachen immer Wörter existieren auf die man das Pumping-Lemma anwenden kann.

Bezug
                        
Bezug
Reguläre Sprache+PumpingLemma: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:43 Sa 22.10.2011
Autor: felixf

Moin!

> Danke okey das macht sinn.
>  Das heißt, dass bei unendlichen regulären Sprachen immer
> Wörter existieren auf die man das Pumping-Lemma anwenden
> kann.

Genau. Es ist sogar so, dass die Aussage bei endlichen Sprachen niemals auf ein Wort anwendbar ist; andernfalls wuerdest du aus so einem Wort ja unendlich viele weitere verschiedene Woerter in der Sprache konstruieren koennen, was ein Widerspruch dazu ist dass die Sprache endlich ist.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]