matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenRegeln für Grenzwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Regeln für Grenzwerte
Regeln für Grenzwerte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regeln für Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:44 Sa 14.01.2006
Autor: AriR

frage zuvor nicht gestellt!!

Hey Leute, angenommen ich habe den fall:
Sei [mm] x_n \in \IR [/mm] mit lim [mm] x_n [/mm] = 0

[mm] \limes_{n\rightarrow\infty} [/mm] ( [mm] x_n [/mm] * [mm] sin(\bruch{1}{x_n}) [/mm] )

kann ich dann schon sagen, dass der Grenzwert 0 ist, da das [mm] x_n [/mm] vor dem sin immer 0 ist und somit egal was sin ist immer 0 rauskommt?

falls das stimmt, könnte man das so zeigen?

[mm] \limes_{n\rightarrow\infty} [/mm] ( [mm] x_n [/mm] * [mm] sin(\bruch{1}{x_n}) [/mm] )=
[mm] \limes_{n\rightarrow\infty} x_n [/mm] * [mm] \limes_{n\rightarrow\infty} sin(\bruch{1}{x_n}) [/mm] = 0 * [mm] \limes_{n\rightarrow\infty} sin(\bruch{1}{x_n}) [/mm] = 0 ??

vielen dank schonmal.. gruß Ari :)

        
Bezug
Regeln für Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:06 Sa 14.01.2006
Autor: eikalein

man kann da nicht enfach sagen, dass der grenzwert o ist. und zwar musst du l`hospital anwenden. dein fall ist hierbei 0*0.

gruß eikalein> frage zuvor nicht gestellt!!


Bezug
        
Bezug
Regeln für Grenzwerte: Beschränktheit + Grenzwertsatz
Status: (Antwort) fertig Status 
Datum: 12:30 Sa 14.01.2006
Autor: Loddar

Hallo Ari!



> kann ich dann schon sagen, dass der Grenzwert 0 ist, da das
> [mm]x_n[/mm] vor dem sin immer 0 ist und somit egal was sin ist
> immer 0 rauskommt?

"egal was [mm] $\sin(...)$ [/mm] ist" , ist falsch! Denn es könnte ja theoretisch der unbestimmte Fall [mm] "$0\times\infty$" [/mm] entstehen.


Entscheidend ist zu erwähnen:

Die [mm] $\sin$-Funktion [/mm] ist beschränkt, da ja gilt: $-1 \ [mm] \le [/mm] \ [mm] \sin(x) [/mm] \ [mm] \le [/mm] \ +1$ .


Damit darfst Du die Grenzwertsätze anwenden:

[mm] $\limes_{n\rightarrow\infty}\left[x_n*\sin\left(\bruch{1}{x_n}\right)\right] [/mm] \ = \ [mm] \limes_{n\rightarrow\infty}\sin\left(\bruch{1}{x_n}\right)*\limes_{n\rightarrow\infty}x_n [/mm] \ [mm] \red{\ge} [/mm] \ [mm] (\red{-1})*\limes_{n\rightarrow\infty}x_n [/mm] \ = \ (-1)*0 \ = \ 0$

[mm] $\limes_{n\rightarrow\infty}\left[x_n*\sin\left(\bruch{1}{x_n}\right)\right] [/mm] \ = \ [mm] \limes_{n\rightarrow\infty}\sin\left(\bruch{1}{x_n}\right)*\limes_{n\rightarrow\infty}x_n [/mm] \ [mm] \red{\le} [/mm] \ [mm] (\red{+1})*\limes_{n\rightarrow\infty}x_n [/mm] \ = \ (+1)*0 \ = \ 0$


Gruß
Loddar


Bezug
                
Bezug
Regeln für Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:38 Sa 14.01.2006
Autor: AriR

vielen dank schonmal für die antworten!!

2 Fragen bleiben da noch :)..
1. wie genau lauten diese grenzwertsätze, weil irgendwie sind mit die umformungen am ende nicht so ganz klar:(

2. ist "0 * [mm] \infty" [/mm] nicht gleich 0 ??

gruß ari

Bezug
                        
Bezug
Regeln für Grenzwerte: Hinweis:
Status: (Antwort) fertig Status 
Datum: 13:10 Sa 14.01.2006
Autor: Hiroschiwa

Also 0 [mm] \* \infty [/mm] kann man nicht so einfach ein ergebniss bestimmen, es kommt auf die Gleichung an.

Wenn du  denn scheinbaren [mm] \limes_{n\rightarrow\infty} [/mm] (0 [mm] \* \infty) [/mm] berechnen willst, brauchst du die Regel von l' Hospital (krankenhasuregel)

Zuerst formst du den Ausruck so um das du den scheinbaren Grenzwert [mm] \limes_{n\rightarrow\infty} [/mm] (0/(1/ [mm] \infty)) [/mm] sprich 0/0 oder [mm] \limes_{n\rightarrow\infty} [/mm] ((1/0)/( [mm] \infty) [/mm] sprich   [mm] \infty/ \infty [/mm] hast (der Trick mit Potenz hoch -1 ist ganz gut.

Dannanch wendest du die Krankenhausregel an (Zähler und Nenner seperat ableiten nach variable bist du irgendwann einen sinnvollen Grenzwert erhälts)

Bezug
                        
Bezug
Regeln für Grenzwerte: Grenzwertsätze
Status: (Antwort) fertig Status 
Datum: 13:34 Sa 14.01.2006
Autor: Loddar

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Ari!


Unter der Voraussetzung, dass die einzelnen Grenzwerte $\limes_{n\rightarrow\infty}a_n \ = \ a$ und $\limes_{n\rightarrow\infty}b_n \ = \ b$ auch echt existieren (also "$\limes \not= \ \pm\infty$"), gelten folgende Sätze:


$\limes_{n\rightarrow\infty}\left(a_n\pm b_n\right) \ = \ \left(\limes_{n\rightarrow\infty}a_n\right)  \ \pm \ \left(\limes_{n\rightarrow\infty}b_n\right) \ = \ a+b$

$\limes_{n\rightarrow\infty}\left(a_n*b_n\right) \ = \ \left(\limes_{n\rightarrow\infty}a_n\right)*\left(\limes_{n\rightarrow\infty}b_n\right) \ = \ a*b$

$\limes_{n\rightarrow\infty}\left(\bruch{a_n}{b_n}\right) \ = \ \bruch{\limes_{n\rightarrow\infty}a_n}{\limes_{n\rightarrow\infty}b_n} \ = \ \bruch{a}{b}$     Hinweis:  $\limes_{n\rightarrow\infty}b_n \ = \ b \ \red{\not= \ 0$


Gruß
Loddar


Bezug
                
Bezug
Regeln für Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:47 Sa 14.01.2006
Autor: AriR

aso das war mir dann doch wohl bekannt, aber könntest du dann bitte nochmal den schritt erläutern, den du am ende gemacht hast bei dem beitrag "Beschrenkheit + Grenzwertsatz"

da tauchen nach anwendung des grenzwertsatzes auf einmal zwei mal das lim [mm] x_n [/mm] auf.

vielen vielen dank für deine mühe.. gruß ari

Bezug
                        
Bezug
Regeln für Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Sa 14.01.2006
Autor: taura

Hallo Ari!

> da tauchen nach anwendung des grenzwertsatzes auf einmal
> zwei mal das lim [mm]x_n[/mm] auf.

Wo genau meinst du denn, dass das zweimal auftaucht?

Was Loddar macht ist folgendes:

[mm] $\limes_{n\rightarrow\infty}\left[x_n*\sin\left(\bruch{1}{x_n}\right)\right] [/mm] \ = \ [mm] \limes_{n\rightarrow\infty}\sin\left(\bruch{1}{x_n}\right)*\limes_{n\rightarrow\infty}x_n \$ [/mm]

Hier hat er erstmal die Grenzwertsätze angewendet, und den Limes an die einzelnen Faktoren geschrieben.

$ [mm] \red{\ge} [/mm] \ [mm] (\red{-1})*\limes_{n\rightarrow\infty}x_n \$ [/mm]

Hier hat er dann den Sinus abgeschätzt. Die Sinus-Funktion wird ja nie kleiner als -1, deswegen kann man sie mit [mm] $\ge [/mm] -1$ abschätzen.

$ = \ (-1)*0 \ = \ 0$

Und hier hat er dann nur noch den Limes der [mm] x_n [/mm] eingesetzt.

In der zweiten Zeile genau das selbe, nur dass diesmal der Sinus in die andere Richtung abgeschätzt wird: Denn der Sinus bleibt ja auch kleiner als 1, also kann man ihn als [mm] $\le [/mm] 1$ abschätzen.

Also bekommt man insgesammt raus:
[mm] $\limes_{n\rightarrow\infty}\left[x_n*\sin\left(\bruch{1}{x_n}\right)\right]\ \ge\ [/mm] 0$ und
[mm] $\limes_{n\rightarrow\infty}\left[x_n*\sin\left(\bruch{1}{x_n}\right)\right]\ \le\ [/mm] 0$

Also:
[mm] $\limes_{n\rightarrow\infty}\left[x_n*\sin\left(\bruch{1}{x_n}\right)\right]\ [/mm] =\ 0$


Nun klarer? :-)

Gruß taura

Bezug
                                
Bezug
Regeln für Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:25 Sa 14.01.2006
Autor: AriR

jo vielen danke ich dachte das [mm] \ge [/mm] (-1) wäre ein kommentar oder sowas, deswegen war ich etwas irritiert... vielen dank euch allen, jetzt ist alles klar :)

Bezug
                
Bezug
Regeln für Grenzwerte: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:27 Sa 14.01.2006
Autor: AriR

ich hab schon wieder ein problem :( :(

eigentlich habe ich die frage für folgende aufgabe gestellt.

[mm] f(x)=\begin{cases} {x^2*sin( \bruch{1}{x}}, & \mbox{für } x=0 \\ {0}, & \mbox{für } x \not= 0 \end{cases} [/mm]

Wo ist f' stetig?

ich habe raus für f'(x): [mm] f'(x)=\begin{cases} {2x*sin( \bruch{1}{x}-cos( \bruch{1}{x}}, & \mbox{für } x=0 \\ {0}, & \mbox{für } x \not= 0 \end{cases} [/mm]

für x [mm] \not= [/mm] 0 ist sie stetig habe ich da raus und für die Stetigkeit im punkt 0 muss ja folgendes gelten:
Sei [mm] x_n \in \IR [/mm] mit lim [mm] x_n [/mm] = 0

[mm] \limes_{n\rightarrow\infty} f(x_n) [/mm] = f(0) = 0

irgendwie habe ich jetzt nach einigen Schritten raus:

-1 [mm] \le 2x_n [/mm] * sin( [mm] \bruch{1}{x_n}-cos( \bruch{1}{x_n} \le [/mm] 1

ist das dann ein Widerspruch um f'(x) ISt stetig in 0 ???

Bezug
                        
Bezug
Regeln für Grenzwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:45 So 15.01.2006
Autor: taura

Hallo Ari!

Da du die Frage nochmal gestellt hast, setzte ich sie hier auf "reagiert".

Bitte in Zukunft Fragen nurnoch einmal posten!

Gruß taura

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]