matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesRegelmäßiges Fünfeck
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Sonstiges" - Regelmäßiges Fünfeck
Regelmäßiges Fünfeck < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regelmäßiges Fünfeck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:01 Fr 28.01.2011
Autor: Mandy_90

Aufgabe
Ziel dieser Aufgabe ist die Konstruktion eines regelmäßigen Fünfecks mit Zirkel und Lineal.
Sei [mm] w_{1}=e^{\bruch{2\pi*i}{5}} [/mm] die primitive Einheitswurzel.

a) Man gebründe (am besten ohne Rechnung), warum [mm] 1+w_{1}+w_{1}^{2}+w_{1}^{3}+w_{1}^{4}=0 [/mm] gilt.

b) Man schreibe eine quadratische Gleichung auf, deren Lösungen genau [mm] \alpha= w_{1}+w_{1}^{4} [/mm] und [mm] \beta=w_{1}^{2}+w_{1}^{3} [/mm] sind und folgere: [mm] cos(\bruch{2*\pi}{5})=\bruch{-1+\wurzel{5}}{4} [/mm] und [mm] cos(\bruch{4*\pi}{5})=\bruch{-1-\wurzel{5}}{4}. [/mm]

Guten Abend,

also die Konstruktion des regelmäßigen Fünfecks kommt noch, dazu muss ich erstmal diese Aufgaben mit komplexen Zahlen lösen, was mir schon schwer fällt.Ich hoffe jemand kann mir helfen.

a) Also wenn ich das richtig verstehe, sind [mm] 1,w_{1},w_{1}^{2},w_{1}^{3},w_{1}^{4} [/mm] die Eckpunkte des Fünfecks, also sind das komplexe Zahlen. So, und wenn ich z.B. den Vektor (1,0) als Auffahrtsvektor nehme und hänge die nächsten 4 Vektoren da dran, wobei die jeweils auf einen Eckpunkt des Fünfecks zeigen, dann bin ich am Ende wieder bei (1,0), habe also den Nullvektor.
Ich glaube,ich habs jetzt nicht so schön ausgedrückt, aber die Idee müsste doch so stimmen oder?

b) Ganz allgemein sieht eine quadratische Gleichung so aus:
[mm] ax^{2}+bx+c=0, [/mm] wobei hier x [mm] \in \IC. [/mm]
Die allgemeinen Lösungen dieser Gleichungen sind
[mm] \alpha=\bruch{-b+\wurzel{b^{2}-4ac}}{2a} [/mm] und

[mm] \beta=\bruch{-b-\wurzel{b^{2}-4ac}}{2a} [/mm] und es muss gelten:

[mm] \alpha=\bruch{-b+\wurzel{b^{2}-4ac}}{2a}=w_{1}+w_{4} [/mm]

[mm] \beta=\bruch{-b-\wurzel{b^{2}-4ac}}{2a}=w_{1}^{2}+w_{1}^{3}. [/mm]

Das Problem ist, dass ich dieses LGS nicht lösen kann, da ich 3 Variablen habe, aber nur zwei Gleichungen.
Ich finde auch keinen Ansatz, wie ich hier vorgehen könnte.
Hat vielleicht jemand einen Tipp für mich?

lg

        
Bezug
Regelmäßiges Fünfeck: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 Sa 29.01.2011
Autor: abakus


> Ziel dieser Aufgabe ist die Konstruktion eines
> regelmäßigen Fünfecks mit Zirkel und Lineal.
>  Sei [mm]w_{1}=e^{\bruch{2\pi*i}{5}}[/mm] die primitive
> Einheitswurzel.
>  
> a) Man gebründe (am besten ohne Rechnung), warum
> [mm]1+w_{1}+w_{1}^{2}+w_{1}^{3}+w_{1}^{4}=0[/mm] gilt.
>  
> b) Man schreibe eine quadratische Gleichung auf, deren
> Lösungen genau [mm]\alpha= w_{1}+w_{1}^{4}[/mm] und
> [mm]\beta=w_{1}^{2}+w_{1}^{3}[/mm] sind und folgere:
> [mm]cos(\bruch{2*\pi}{5})=\bruch{-1+\wurzel{5}}{4}[/mm] und
> [mm]cos(\bruch{4*\pi}{5})=\bruch{-1-\wurzel{5}}{4}.[/mm]
>  Guten Abend,
>  
> also die Konstruktion des regelmäßigen Fünfecks kommt
> noch, dazu muss ich erstmal diese Aufgaben mit komplexen
> Zahlen lösen, was mir schon schwer fällt.Ich hoffe jemand
> kann mir helfen.
>  
> a) Also wenn ich das richtig verstehe, sind
> [mm]1,w_{1},w_{1}^{2},w_{1}^{3},w_{1}^{4}[/mm] die Eckpunkte des
> Fünfecks, also sind das komplexe Zahlen. So, und wenn ich
> z.B. den Vektor (1,0) als Auffahrtsvektor nehme und hänge
> die nächsten 4 Vektoren da dran, wobei die jeweils auf
> einen Eckpunkt des Fünfecks zeigen, dann bin ich am Ende
> wieder bei (1,0), habe also den Nullvektor.
>  Ich glaube,ich habs jetzt nicht so schön ausgedrückt,
> aber die Idee müsste doch so stimmen oder?
>  
> b) Ganz allgemein sieht eine quadratische Gleichung so aus:
> [mm]ax^{2}+bx+c=0,[/mm] wobei hier x [mm]\in \IC.[/mm]
>  Die allgemeinen
> Lösungen dieser Gleichungen sind
>  [mm]\alpha=\bruch{-b+\wurzel{b^{2}-4ac}}{2a}[/mm] und
>  
> [mm]\beta=\bruch{-b-\wurzel{b^{2}-4ac}}{2a}[/mm] und es muss
> gelten:
>  
> [mm]\alpha=\bruch{-b+\wurzel{b^{2}-4ac}}{2a}=w_{1}+w_{4}[/mm]
>  
> [mm]\beta=\bruch{-b-\wurzel{b^{2}-4ac}}{2a}=w_{1}^{2}+w_{1}^{3}.[/mm]
>  
> Das Problem ist, dass ich dieses LGS nicht lösen kann, da
> ich 3 Variablen habe, aber nur zwei Gleichungen.

Es muss auch eine Gleichung in Normalform (mit a=1) geben, die diese Lösungen hat. Ansatz über Satz des Vieta!

Zu a) Die Struktur des Terms drängt mir die Anwendung der Summenformel für geometrische Reihen geradezu auf ...
Gruß Abakus

>  Ich finde auch keinen Ansatz, wie ich hier vorgehen
> könnte.
>  Hat vielleicht jemand einen Tipp für mich?
>  
> lg


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]