matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesRegelfunktion Beweis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Regelfunktion Beweis
Regelfunktion Beweis < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regelfunktion Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 Mi 15.05.2013
Autor: Zero_112

Aufgabe
Es sei f:[a,b] [mm] \to \IR [/mm] eine auf dem abgeschlossenen Intervall [a,b] definierte Funktion. Zeigen sie, dass wenn eine Folge [mm] (g_n)_{n\in\IN} [/mm] von Treppenfunktionen [mm] g_n: [/mm] [a,b] [mm] \to \IR [/mm] existiert, sodass [mm] \summe_{i=1}^{\infty}g_i [/mm] auf [a,b] normal konvergent ist und [mm] f=\summe_{i=1}^{\infty}g_i, [/mm] dann ist f eine Regelfunktion.


Hallo!

Ich habe einige Probleme mit dem Beweis dieser Aussage, hier ist das, was ich bisher gemacht habe:

Es gilt: [mm] \summe_{i=1}^{\infty}g_i [/mm] auf [a,b] normal konvergent [mm] \Rightarrow g_n [/mm] ist beschränkt auf [a,b] und [mm] \summe_{i=1}^{\infty}||g_i||_{\infty}=\summe_{i=1}^{\infty}sup\{|g_n|: x\in [a,b]\}< \infty [/mm]

Es gilt auch: [mm] f=\summe_{i=1}^{\infty}g_i \Rightarrow \limes_{n\rightarrow\infty}(\summe_{i=1}^{n}g_i)_{n\in\IN} [/mm] = f (punktweise)

Im Grunde habe ich nur Definitionen ausgepackt, aber ich bekomme das nicht wirklich zusammen. Ich muss ja irgendwie auf [mm] |f-g_n|< \varepsilon [/mm] kommen, habe aber keine Idee, wie ich das anstellen soll.:/

        
Bezug
Regelfunktion Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Mi 15.05.2013
Autor: fred97


> Es sei f:[a,b] [mm]\to \IR[/mm] eine auf dem abgeschlossenen
> Intervall [a,b] definierte Funktion. Zeigen sie, dass wenn
> eine Folge [mm](g_n)_{n\in\IN}[/mm] von Treppenfunktionen [mm]g_n:[/mm] [a,b]
> [mm]\to \IR[/mm] existiert, sodass [mm]\summe_{i=1}^{\infty}g_i[/mm] auf
> [a,b] normal konvergent ist und [mm]f=\summe_{i=1}^{\infty}g_i,[/mm]
> dann ist f eine Regelfunktion.
>  
> Hallo!
>  
> Ich habe einige Probleme mit dem Beweis dieser Aussage,
> hier ist das, was ich bisher gemacht habe:
>  
> Es gilt: [mm]\summe_{i=1}^{\infty}g_i[/mm] auf [a,b] normal
> konvergent [mm]\Rightarrow g_n[/mm] ist beschränkt auf [a,b]

Diese Implikation ist doch Unsinn ! Da [mm] g_n [/mm] eine Treppenfunktion ist, nimmt [mm] g_n [/mm] nur endlich viele Werte an und ist damit trivialerweise beschränkt.



> und
> [mm]\summe_{i=1}^{\infty}||g_i||_{\infty}=\summe_{i=1}^{\infty}sup\{|g_n|: x\in [a,b]\}< \infty[/mm]
>  
> Es gilt auch: [mm]f=\summe_{i=1}^{\infty}g_i \Rightarrow \limes_{n\rightarrow\infty}(\summe_{i=1}^{n}g_i)_{n\in\IN}[/mm]
> = f (punktweise)


Nicht nur punktweise, sondern auch gleichmäßig auf [a,b] !


>  
> Im Grunde habe ich nur Definitionen ausgepackt, aber ich
> bekomme das nicht wirklich zusammen. Ich muss ja irgendwie
> auf [mm]|f-g_n|< \varepsilon[/mm] kommen, habe aber keine Idee, wie
> ich das anstellen soll.:/

Wenn man Dir ordentlich helfen soll, wäre es wichtig zu wissen, wie Ihr "Regelfunktion" def. habt.

Hattet Ihr das:

1. f heißt Regelfunktion, wenn f in jedem Punkt x [mm] \in [/mm] (a,b) sowohl einen linksseitigen als auch einen rechtsseitigen Grenzwert besitzt und
in a einen rechtsseitigen Grenzwert und in b einen linksseitigen Grenzwert hat.

Oder das:

2. f heißt Regelfunktion

[mm] \gdw [/mm]

es gibt eine Folge von Treppenfunktionen $ [mm] t_n:[a,b]\rightarrow \IR$ [/mm] die gleichmäßig gegen $ f$ konvergiert.

Wenn Ihr 2. als Def. hattet, ist Deine obige Aufgabe sehr einfach,  anderenfalls nicht.

FRED




Bezug
                
Bezug
Regelfunktion Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Mi 15.05.2013
Autor: Zero_112


> > Es gilt: [mm]\summe_{i=1}^{\infty}g_i[/mm] auf [a,b] normal
> > konvergent [mm]\Rightarrow g_n[/mm] ist beschränkt auf [a,b]
>
> Diese Implikation ist doch Unsinn ! Da [mm]g_n[/mm] eine
> Treppenfunktion ist, nimmt [mm]g_n[/mm] nur endlich viele Werte an
> und ist damit trivialerweise beschränkt.

Da hast du wohl Recht. Unser Prof hat uns das so gegeben, von daher habe ich das einfach mal blind übernommen.


> > Es gilt auch: [mm]f=\summe_{i=1}^{\infty}g_i \Rightarrow \limes_{n\rightarrow\infty}(\summe_{i=1}^{n}g_i)_{n\in\IN}[/mm]
> > = f (punktweise)
>  
>
> Nicht nur punktweise, sondern auch gleichmäßig auf [a,b]
> !

> Wenn man Dir ordentlich helfen soll, wäre es wichtig zu
> wissen, wie Ihr "Regelfunktion" def. habt.
>  
> Hattet Ihr das:
>  
> 1. f heißt Regelfunktion, wenn f in jedem Punkt x [mm]\in[/mm]
> (a,b) sowohl einen linksseitigen als auch einen
> rechtsseitigen Grenzwert besitzt und
>  in a einen rechtsseitigen Grenzwert und in b einen
> linksseitigen Grenzwert hat.
>  
> Oder das:
>  
> 2. f heißt Regelfunktion
>  
> [mm]\gdw[/mm]
>
> es gibt eine Folge von Treppenfunktionen
> [mm]t_n:[a,b]\rightarrow \IR[/mm] die gleichmäßig gegen [mm]f[/mm]
> konvergiert.
>  
> Wenn Ihr 2. als Def. hattet, ist Deine obige Aufgabe sehr
> einfach,  anderenfalls nicht.

Wir hatten sogar beides.

Kann man sagen: Da die Menge der Treppenfunktionen auf [a,b] einen Vektorraum bildet, sind ja die Folgenglieder von [mm] (\summe_{i=1}^{n}g_i)_{n\in\IN} [/mm] ebenfalls Treppenfunktionen und weil [mm] (\summe_{i=1}^{n}g_i)_{n\in\IN} [/mm] gleichmäßig gegen f konvergiert, muss f ja eine Regelfunktion sein.


Bezug
                        
Bezug
Regelfunktion Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 Mi 15.05.2013
Autor: fred97


> > > Es gilt: [mm]\summe_{i=1}^{\infty}g_i[/mm] auf [a,b] normal
> > > konvergent [mm]\Rightarrow g_n[/mm] ist beschränkt auf [a,b]
> >
> > Diese Implikation ist doch Unsinn ! Da [mm]g_n[/mm] eine
> > Treppenfunktion ist, nimmt [mm]g_n[/mm] nur endlich viele Werte an
> > und ist damit trivialerweise beschränkt.
>  
> Da hast du wohl Recht. Unser Prof hat uns das so gegeben,
> von daher habe ich das einfach mal blind übernommen.
>  
>
> > > Es gilt auch: [mm]f=\summe_{i=1}^{\infty}g_i \Rightarrow \limes_{n\rightarrow\infty}(\summe_{i=1}^{n}g_i)_{n\in\IN}[/mm]
> > > = f (punktweise)
>  >  
> >
> > Nicht nur punktweise, sondern auch gleichmäßig auf [a,b]
> > !
>  
> > Wenn man Dir ordentlich helfen soll, wäre es wichtig zu
> > wissen, wie Ihr "Regelfunktion" def. habt.
>  >  
> > Hattet Ihr das:
>  >  
> > 1. f heißt Regelfunktion, wenn f in jedem Punkt x [mm]\in[/mm]
> > (a,b) sowohl einen linksseitigen als auch einen
> > rechtsseitigen Grenzwert besitzt und
>  >  in a einen rechtsseitigen Grenzwert und in b einen
> > linksseitigen Grenzwert hat.
>  >  
> > Oder das:
>  >  
> > 2. f heißt Regelfunktion
>  >  
> > [mm]\gdw[/mm]
> >
> > es gibt eine Folge von Treppenfunktionen
> > [mm]t_n:[a,b]\rightarrow \IR[/mm] die gleichmäßig gegen [mm]f[/mm]
> > konvergiert.
>  >  
> > Wenn Ihr 2. als Def. hattet, ist Deine obige Aufgabe sehr
> > einfach,  anderenfalls nicht.
>  
> Wir hatten sogar beides.
>  
> Kann man sagen: Da die Menge der Treppenfunktionen auf
> [a,b] einen Vektorraum bildet, sind ja die Folgenglieder
> von [mm](\summe_{i=1}^{n}g_i)_{n\in\IN}[/mm] ebenfalls
> Treppenfunktionen und weil [mm](\summe_{i=1}^{n}g_i)_{n\in\IN}[/mm]
> gleichmäßig gegen f konvergiert, muss f ja eine
> Regelfunktion sein.
>  


Jedes [mm] g_i [/mm] ist eine Treppenfunktion. Ist [mm] s_n:=g_1+g_2+...+g_n, [/mm] so ist [mm] s_n [/mm] eine Treppenfunktion.

[mm] (s_n) [/mm] konv. auf [a,b] glm. gegen f, also ist f eine Treppenfunktion.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]