matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisRegelfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Regelfunktion
Regelfunktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regelfunktion: Frage
Status: (Frage) beantwortet Status 
Datum: 22:49 Do 04.11.2004
Autor: b-hugo

Hallo alle miteinander,

folgende Aufgabe beschäftigt mich seit Tagen und ich komm auf keinen grünen Zweig- wär sehr dankbar wenn mir jemand helfen kann:

Man zeige dass eine Regelfunktion Riemann integrierbar ist.
Und dass eine Regelfunktion in allen bis auf höchstens abzählbar vielen Punkten stetig ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Vielen  Dank,

B-hugo



        
Bezug
Regelfunktion: Def Regelfunktion
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:07 Do 04.11.2004
Autor: Marc

Hallo B-hugo,

> Man zeige dass eine Regelfunktion Riemann integrierbar
> ist.
>  Und dass eine Regelfunktion in allen bis auf höchstens
> abzählbar vielen Punkten stetig ist.

Bitte liefere doch noch die bzw. Eure Definition einer Regelfunktion nach.

Viele Grüße,
Marc

Bezug
                
Bezug
Regelfunktion: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:22 Fr 05.11.2004
Autor: JannisCel

Wie immer ist es das herum schieben von Definitionen.

Versuch die Grenzwerte für die Ober- und Untersummen miteinander zu vergleichen. Sind sie identisch, dann ist sie riemann integrierbar.

Bezug
        
Bezug
Regelfunktion: Definition
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:56 Fr 05.11.2004
Autor: b-hugo


Hier unsere Definitionen:

Eine Funktion f: [a, b]  [mm] \to \IR [/mm] heißt Treppenfunktion, wee es eine Zerlegung a= [mm] x_{0} [/mm] <....< [mm] x_{k}= [/mm] b von [a,b] gibt, so dass f auf jedem offenen Teilintervall [mm] (x_{j-1}, x_{j}) [/mm] konstant ist; die Werte [mm] f(x_{j}) [/mm] sind beliebig.


Eine Funktion  f: [a, b]  [mm] \to \IR [/mm] heißt Regelfunktion, wenn es eine Folge( [mm] f_{j}) [/mm] von Treppenfunktionen auf [a,b] gibt mit  [mm] f_{j} \to [/mm] f (j  [mm] \to \infty [/mm] ) gleichmässig.

Danke!!!!

B-hugo

Bezug
        
Bezug
Regelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Sa 06.11.2004
Autor: Stefan

Hallo B-hugo!

Die erste Behauptung findest du []hier (Definition 26.10, Satz 26.12, Bemerkung vor Definition 26.13).

Zur anderen Teilaufgabe:

Sei [mm] $(g_n)_{n \in \IN}$ [/mm] eine Folge von Treppenfunktionen mit [mm] $\lim\limits_{n \to \infty} \Vert f-g_n \Vert_{\infty} [/mm] = 0$. Die Menge $A$ aller Unstetigkeitsstellen aller [mm] $g_n$ [/mm] ist höchstens abzählbar; du musst jetzt nur noch zeigen, dass die Unstetigkeitsstellen der Regelfunktion $f$ zu $A$ gehören.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]