matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteRegel von de l'Hôpital
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Grenzwerte" - Regel von de l'Hôpital
Regel von de l'Hôpital < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regel von de l'Hôpital: Bruchdarstellung
Status: (Frage) beantwortet Status 
Datum: 16:50 Mo 12.11.2007
Autor: MrS

Aufgabe
Hallo,
ich hatte heute meine erste Einführung in die Regel von de l'Hôpital! Die Regel habe ich soweit verstanden! Ich soll den Grenzwert der Funktion [mm] \limes_{x\rightarrow\infty} (1+\bruch{1}{x})^{x} [/mm] bestimmen!

Wie kann ich die oben genannte Funktion in einem Bruch darstellen?

        
Bezug
Regel von de l'Hôpital: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Mo 12.11.2007
Autor: angela.h.b.

Ich soll
> den Grenzwert der Funktion [mm]\limes_{x\rightarrow\infty} (1+\bruch{1}{x})^{x}[/mm]
> bestimmen!
>  Wie kann ich die oben genannte Funktion in einem Bruch
> darstellen?

Hallo,

bedenke: [mm] 1+\bruch{1}{x}= \bruch{x+1}{x} [/mm]

Gruß v. Angela

Bezug
        
Bezug
Regel von de l'Hôpital: Umformung
Status: (Antwort) fertig Status 
Datum: 17:15 Mo 12.11.2007
Autor: Loddar

Hallo MrS!


Um hier Herrn de l'Hospital anwenden zu können, musst Du allerdings etwas mehr umformen:
[mm] $$\left(1+\bruch{1}{x}\right)^x [/mm] \ = \ [mm] \left[ \ e^{\ln\left(1+\bruch{1}{x}\right)} \ \right]^x [/mm] \ = \ [mm] e^{x*\ln\left(1+\bruch{1}{x}\right)} [/mm] \ = \ [mm] e^{\bruch{\ln\left(1+\bruch{1}{x}\right)}{\bruch{1}{x}}}$$ [/mm]
Nun den Ausdruck im Exponenten mit Herrn de l'Hospital bekannt machen ...



Gruß
Loddar


Bezug
                
Bezug
Regel von de l'Hôpital: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:58 Mi 14.11.2007
Autor: MrS

Aufgabe
Hallo, soweit hab ichs nun verstanden, bin dann wie folgt vorgegangen

[mm] {\bruch{\ln\left(1+\bruch{1}{x}\right)}{\bruch{1}{x}}} [/mm] = [mm] \bruch{\bruch{1}{x(+1)}}{\bruch{1}{x^2}} [/mm]  = [mm] \bruch{x}{x+1} [/mm] = [mm] \bruch{1}{1} [/mm]

Stimmt mein Ansatz bzw. meine Lösung?

Bezug
                        
Bezug
Regel von de l'Hôpital: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Mi 14.11.2007
Autor: kornfeld

Das wuerde ich dem Tutor so nicht in die Hand druecken. Die Regel von l'hopital sagt ja nicht, dass der Quotient $ [mm] f\over [/mm] g $ "gleich" $f'/g'$ ist, sondern, dass ihr uneigentlicher Grenzwert uebereinstimmen. Ausserdem ist deine Rechnung nicht ganz korrekt. Ueberpruefe das noch einmal

K

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]