matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisRegel für Symmetrie bei e-Funk
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Regel für Symmetrie bei e-Funk
Regel für Symmetrie bei e-Funk < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Regel für Symmetrie bei e-Funk: Frage
Status: (Frage) beantwortet Status 
Datum: 22:02 Fr 20.05.2005
Autor: Buba

Ich soll für ein Referat eine Regel für die Symmetrie von e-Funktionen  aufstellen.
Im Unterricht haben wir bis jetzt nur zwei unsymmetrische und zwei punktsymmetrische behandelt. Worin liegen diese Unterschiede begründet?
Meine Vermutung ist, dass es mit der Exponenten und den jeweiligen Vorzeichen zu tun hat. Mein Lösungsansatz wäre, möglichst viele Funktionen zu diskutieren und die Gemeinsamkeiten sozusagen "empirisch" aufzudecken.
Bis jetzt habe ich dies gescheut, da es mit sehr viel Arbeit verbunden ist (Ableitungen etc.).
Wenn es einen besseren, leichteren Weg gibt wäre ich über eine Antwort sehr dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt




        
Bezug
Regel für Symmetrie bei e-Funk: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Fr 20.05.2005
Autor: Max

Hallo Sebastian,

warum musst du die Ableitung berechnen? Soweit ich weiß läßt sich die Symmetrie genausogut an der Funktion selbst erkennen. ZB erkennt man MBSymmetrie zur $y$-Achse daran, dass für alle [mm] $x\in [/mm] D$ gilt: $f(x)=f(-x)$.

Gruß Max


Bezug
        
Bezug
Regel für Symmetrie bei e-Funk: Antwort auf die Frage
Status: (Antwort) fertig Status 
Datum: 23:44 Fr 20.05.2005
Autor: nobsy

Hallo,
man muss die Funktionstypen ein wenig klassifizieren und dann geht es relativ einfach.
1. [mm] f(x)=c*e^{g(x)} [/mm] ist genau dann achsensymmetrisch zur y-Achse, wenn es g(x) ist, wobei c=konstant.
2. [mm] f(x)=c*e^{g(x)} [/mm] kann für c ungleich null nie punktsymmetrisch zum Ursprung sein.
3. [mm] f(x)=g(x)*e^x [/mm] ist immer unsymmetrisch, wenn g(x) keine Exponentialfunktion enthält.
Ich hoffe, das genügt fürs erste.
Norbert

[edit] wenn der Exponent mehr als ein Zeichen enthält (wie bei g(x)), muss man ihn in [mm] $\{ \}$ [/mm] geschleifte Klammern setzen.


Bezug
                
Bezug
Regel für Symmetrie bei e-Funk: [edit]
Status: (Frage) beantwortet Status 
Datum: 10:22 Sa 21.05.2005
Autor: Buba

Vielen Dank für eure schnellen Antworten!

Ich habe nur Probleme sie auf meine Funktionen anzuwenden.

Norberts dritte Funktionsklasse sieht meinen Funktionen am ähnlichsten.
[mm]f(x)=g(x).e^x[/mm]

Jedoch sind zwei von diesem Typus laut Kurvendikssion punktsymmetrisch.
Ich versuche sie mal abzutippen, vielleicht habe ich ja irgendwo einen Denkfehler:

[mm] $e^{-x^2}*(x^2)$ [/mm] ; [mm] $e^{-0,5x^2}*(x)$ [/mm]

Meine unsymmetrischen Funktionen:

[mm] $e^{2x}*(x-2)$ [/mm] ; [mm] $e^{0,5x-1}*(2x-6)$ [/mm]

Liebe Grüsse Sebastian

[edit] den Formeditor benutzt!

Bezug
                        
Bezug
Regel für Symmetrie bei e-Funk: Symmetrien
Status: (Antwort) fertig Status 
Datum: 11:29 Sa 21.05.2005
Autor: Loddar

Hallo Sebastian!


> Jedoch sind zwei von diesem Typus laut Kurvendiskussion
> punktsymmetrisch.
> Ich versuche sie mal abzutippen, vielleicht habe ich ja
> irgendwo einen Denkfehler:
>  
> [mm]e^-x^2*(x^2)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Lautet diese Funktion $f(x) \ = \ x^2 * e^{-x^2}$ ??

Diese Funktion ist achsen-symmetrisch zur y-Achse, da ja hier gilt:

${\red{f(-x)} \ = \ (-x)^2 * e^{-(-x)^2} \ = \ (-1)^2*x^2 * e^{-(-1)^2*x^2} \ = \ x^2 * e^{-x^2} \ = \ \red{f(x)}$



>[mm]e^-0,5x^2*(x)[/mm]

Bei der Funktion $f(x) \ = \ [mm] x*e^{-0,5x^2}$ [/mm] liegt Punktsymmetrie zum Ursprung vor. Denn hier gilt ja (bitte selber rechnen):

[mm] $\red{-f(-x)} [/mm] \ = \ - [mm] \left[(-x) * e^{-0,5*(-x)^2}\right] [/mm] \ = \ ... \ = \ [mm] \red{f(x)}$ [/mm]


[Dateianhang nicht öffentlich]



> Meine unsymmetrischen Funktionen:
>  
> e^2x*(x-2) ; [mm]e^0,5x-1*(2x-6)[/mm]

[mm] $f_1(x) [/mm] \ = \ [mm] (x-2)*e^{2x}$ [/mm]   bzw.   [mm] $f_2(x) [/mm] \ = \ [mm] (2x-6)*e^{0,5x-1}$ [/mm]  ??

[ok] Da hast Du Recht: bei diesen beiden Funktionen liegt jeweils keine Symmetrie vor.


[Dateianhang nicht öffentlich]


Gruß
Loddar


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
Bezug
                                
Bezug
Regel für Symmetrie bei e-Funk: Dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:03 Sa 21.05.2005
Autor: Buba

Vielen Dank für eure Hilfe!!!

Ich habe es endlich verstanden und bin somit ein großes Stück weiter gekommen.

Sebastian

Bezug
                                
Bezug
Regel für Symmetrie bei e-Funk: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 Sa 21.05.2005
Autor: nobsy

Die punktsymmetrischen Funktionen fallen nicht unter die von mir genannten Kategorien.
f(x)=punktsymm(x).e^symm(x)
ist immer punktsymmetrisch. Das ist auch gleichzeitig die einzige Möglichkeit für eine punktsymmetrische e-Funktion.
Norbert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]