matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenReeller Parameter Summenvektor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Vektoren" - Reeller Parameter Summenvektor
Reeller Parameter Summenvektor < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reeller Parameter Summenvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 So 10.11.2013
Autor: Die_Ali

Aufgabe
Die Vektoren [mm] \vec a [/mm] und [mm] \vec b [/mm] schließen einen Winkel von [mm] \bruch{2Pi}{3} [/mm] ein und haben die Beträge |[mm] \vec a [/mm]|= 2 und |[mm] \vec b [/mm]|= 2.
Bestimmen Sie den reellen Parameter x so, dass der Summenvektor der Vektoren [mm] \vec c = \vec a + 2x \vec b [/mm]und [mm] \vec d = \vec a - 3x \vec b [/mm] die Länge 8 hat.
Welchen Winkel schließen die Vektoren [mm] \vec c [/mm] und [mm] \vec d [/mm] ein?
Bestimmen Sie einen Vektor [mm] \vec e [/mm] der Läge 1, der senkrecht auf [mm] \vec c [/mm] und [mm] \vec d [/mm] steht. Wie groß ist der Rauminhalt des Spats, der von den Vektoren [mm] \vec c [/mm], [mm] \vec d [/mm] und [mm] \vec e [/mm] aufgespannt wird?

Mein Lösungsansatz:

Als erstes habe ich zwei Vektoren (je der Länge 2) durch die bekannte Länge und durch den bekannten Winkel erzeugt:
[mm] \vec a = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} [/mm]
[mm] \vec a = \begin{pmatrix} \cos \bruch {2Pi}{3} \\ \sin \bruch {2Pi}{3} \\0 \end{pmatrix} = \begin{pmatrix} \bruch {1}{2} \wurzel {2} \\ -\bruch {1}{2} \wurzel {2} \\0 \end{pmatrix} [/mm]

Im Zweiten Schritt berechnete ich die Vektoren [mm]\vec c[/mm] und [mm]\vec d[/mm] anhanden der Vektoraddition /- subtration:

[mm] \vec c = \vec a + 2x\vec b = \begin{pmatrix} 2+x\wurzel {2} \\ -x\wurzel {2} \\ 0 \end{pmatrix} [/mm]
[mm] \vec c = \vec a - 3x\vec b = \begin{pmatrix} 2-x\bruch {3}{2}\wurzel {2} \\ -x\bruch {3}{2}\wurzel {2} \\ 0 \end{pmatrix} [/mm]

Da der reelle Parameter für den Summenvektor gesucht ist, errechnete ich auch diesen:

[mm] \vec s = \vec c - \vec d = \begin{pmatrix} 2+x\wurzel{2}+2-x\bruch {3}{2}\wurzel 2 \\ -x\wurzel{2}-x\bruch {3}{2}\wurzel 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 4-\bruch {1}{2}x\wurzel 2 \\ -\bruch {5}{2}x\wurzel 2 \\ 0 \end{pmatrix} [/mm]

Nun dachte ich mir, um auf den gesuchten reellen Parameter x zu kommen, könnte ich einfach 8=s setzen und somit x berechnen.
Und genau hier taucht mein erstes Problem auf. Ich scheine zu blöd zum rechnen zu sein:

[mm] 8 =\wurzel{(4-\bruch{1}{2}x\wurzel{2})^2+(-\bruch{5}{2}x\wurzel{2})^2}=\wurzel{16-\bruch{1}{4}2x^2-\bruch {25}{4}2x^2} =\wurzel{16-\bruch{1}{2}x^2+\bruch{17}{4}x^2} =\wurzel{16+\bruch{15}{4}x^2} = [/mm]

Hier habe ich dann aufgegeben.

Ich denke, dass meine Überlegung ein Anfang war, nur komme ich mit der "Rechnerei" nicht ganz klar (was mir ehrlich gesagt auch ziemlich peinlich ist...).

Weitere Überlegungen zum Lösen der restlichen Aufgabe:

Wenn ich den reellen Parameter x ermittelt habe würde ich einen Normalenvektor erstellen, welchen ich auf die Länge 1 bringen würde, somit hätte ich den Vektor [mm]\vec e[/mm] und würde den Rauminhalt des Spats über das Lösen der Determinante der Vektoren [c,d,e] ermitteln.

Es wäre wirklich sehr nett, wenn mir jemand helfen könnte, denn ich kann mir Nachhilfe momentan leider nicht leisten.

Vielen Lieben Dank im Voraus. Die Ali
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Reeller Parameter Summenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 18:20 So 10.11.2013
Autor: abakus


> Die Vektoren [mm]\vec a[/mm] und [mm]\vec b[/mm] schließen einen Winkel von
> [mm]\bruch{2Pi}{3}[/mm] ein und haben die Beträge |[mm] \vec a [/mm]|= 2 und
> |[mm] \vec b [/mm]|= 2.
> Bestimmen Sie den reellen Parameter x so, dass der
> Summenvektor der Vektoren [mm]\vec c = \vec a + 2x \vec b [/mm]und
> [mm]\vec d = \vec a - 3x \vec b[/mm] die Länge 8 hat.
> Welchen Winkel schließen die Vektoren [mm]\vec c[/mm] und [mm]\vec d[/mm]
> ein?
> Bestimmen Sie einen Vektor [mm]\vec e[/mm] der Läge 1, der
> senkrecht auf [mm]\vec c[/mm] und [mm]\vec d[/mm] steht. Wie groß ist der
> Rauminhalt des Spats, der von den Vektoren [mm]\vec c [/mm], [mm]\vec d[/mm]
> und [mm]\vec e[/mm] aufgespannt wird?
> Mein Lösungsansatz:

>

> Als erstes habe ich zwei Vektoren (je der Länge 2) durch
> die bekannte Länge und durch den bekannten Winkel
> erzeugt:
> [mm]\vec a = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}[/mm]

>

> [mm]\vec a = \begin{pmatrix} \cos \bruch {2Pi}{3} \\ \sin \bruch {2Pi}{3} \\0 \end{pmatrix} = \begin{pmatrix} \bruch {1}{2} \wurzel {2} \\ -\bruch {1}{2} \wurzel {2} \\0 \end{pmatrix} [/mm]

Hallo,
die Aufgabe ist allgemein zu lösen und nicht mit persönlich gut passenden Vektoren.
Aus [mm]\vec c = \vec a +2x \vec b [/mm] und [mm] $\vec [/mm] d = [mm] \vec [/mm] a - 3x$ folgt [mm]\vec c +\vec d= 2\vec a -x \vec b [/mm].
Der Vektor [mm] $2\vec{a}$ [/mm] hat den Betrag 4, der Vektor  [mm] $x*\vec{b}$ hat [/mm] den Betrag 2*|x|, und der Winkel zwischen beiden ist 120° (oder 60°, je nachdem, welches Vorzeichen x hat).
Der Betrag von [mm] 2\vec a -x \vec b [/mm] ist eine Sache für den Kosinussatz.
Gruß Abakus




>

> Im Zweiten Schritt berechnete ich die Vektoren [mm]\vec c[/mm] und
> [mm]\vec d[/mm] anhanden der Vektoraddition /- subtration:

>

> [mm] \vec c = \vec a + 2x\vec b = \begin{pmatrix} 2+x\wurzel {2} \\ -x\wurzel {2} \\ 0 \end{pmatrix} [/mm]

>

> [mm] \vec c = \vec a - 3x\vec b = \begin{pmatrix} 2-x\bruch {3}{2}\wurzel {2} \\ -x\bruch {3}{2}\wurzel {2} \\ 0 \end{pmatrix} [/mm]

>

> Da der reelle Parameter für den Summenvektor gesucht ist,
> errechnete ich auch diesen:

>

> [mm] \vec s = \vec c - \vec d = \begin{pmatrix} 2+x\wurzel{2}+2-x\bruch {3}{2}\wurzel 2 \\ -x\wurzel{2}-x\bruch {3}{2}\wurzel 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 4-\bruch {1}{2}x\wurzel 2 \\ -\bruch {5}{2}x\wurzel 2 \\ 0 \end{pmatrix} [/mm]

>

> Nun dachte ich mir, um auf den gesuchten reellen Parameter
> x zu kommen, könnte ich einfach 8=s setzen und somit x
> berechnen.
> Und genau hier taucht mein erstes Problem auf. Ich scheine
> zu blöd zum rechnen zu sein:

>

> [mm] 8 =\wurzel{(4-\bruch{1}{2}x\wurzel{2})^2+(-\bruch{5}{2}x\wurzel{2})^2}=\wurzel{16-\bruch{1}{4}2x^2-\bruch {25}{4}2x^2} =\wurzel{16-\bruch{1}{2}x^2+\bruch{17}{4}x^2} =\wurzel{16+\bruch{15}{4}x^2} = [/mm]

>

> Hier habe ich dann aufgegeben.

>

> Ich denke, dass meine Überlegung ein Anfang war, nur komme
> ich mit der "Rechnerei" nicht ganz klar (was mir ehrlich
> gesagt auch ziemlich peinlich ist...).

>

> Weitere Überlegungen zum Lösen der restlichen Aufgabe:

>

> Wenn ich den reellen Parameter x ermittelt habe würde ich
> einen Normalenvektor erstellen, welchen ich auf die Länge
> 1 bringen würde, somit hätte ich den Vektor [mm]\vec e[/mm] und
> würde den Rauminhalt des Spats über das Lösen der
> Determinante der Vektoren [c,d,e] ermitteln.

>

> Es wäre wirklich sehr nett, wenn mir jemand helfen
> könnte, denn ich kann mir Nachhilfe momentan leider nicht
> leisten.

>

> Vielen Lieben Dank im Voraus. Die Ali
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]