matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenReelle x aus Wurzelbruch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionen" - Reelle x aus Wurzelbruch
Reelle x aus Wurzelbruch < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reelle x aus Wurzelbruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:39 Sa 13.11.2010
Autor: Lucie05

Aufgabe
Für welche reellen x sind folgende Ausdrücke definiert?

[mm] \wurzel{\bruch{2+3x-2x*x}{3-5x-2x*x}} [/mm]

Hallo,

zuerst:Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



da der Term ja unter einer Wurzel steht muss:
[mm] \bruch{2+3x-2x*x}{3-5x-2x*x}>= 0 [/mm] sein.

[mm] \bruch{2+3x-2x*x}{3-5x-2x*x}>= 0 [/mm] |+1

[mm] \bruch{2+3x-2x*x}{3-5x-2x*x}+1>= 1 [/mm]|*(3-5x-2x*x)

2+3x-2x*x+3-5x-2x*x>=3-5x-2x*x

0>=2x²-7x-2|/2

0>=x²-3,5x-1

pq-Formel

x1,2=[mm] \bruch{7}{4}+-\wurzel{\bruch{49}{16}+1} [/mm]

L=[mm] \bruch{7}{4}-\wurzel{\bruch{49}{16}+1} [/mm]<x<[mm] \bruch{7}{4}+\wurzel{\bruch{49}{16}+1}[/mm]

        
Bezug
Reelle x aus Wurzelbruch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:58 Sa 13.11.2010
Autor: schachuzipus

Hallo,

was soll das?

Du hast exakt dieselbe Aufgabe hier:

https://www.vorhilfe.de/read?t=733880

gepostet und dort Antwort erhalten.

Wenn irgendwas unklar geblieben ist, frage nach, aber vermeide bitte in Zukunft Doppelposts!

Danke und Gruß

schachuzipus




Bezug
        
Bezug
Reelle x aus Wurzelbruch: Antwort
Status: (Antwort) fertig Status 
Datum: 00:01 So 14.11.2010
Autor: reverend

Hallo Lucie,

nicht schlecht, aber auch noch nicht vollständig:

> da der Term ja unter einer Wurzel steht muss:
>  [mm]\bruch{2+3x-2x*x}{3-5x-2x*x}>= 0[/mm] (und definiert) sein.

[ok]

> [mm]\bruch{2+3x-2x*x}{3-5x-2x*x}>= 0[/mm] |+1
>  
> [mm]\bruch{2+3x-2x*x}{3-5x-2x*x}+1>= 1 [/mm]|*(3-5x-2x*x)

[ok] Gute Idee!

> 2+3x-2x*x+3-5x-2x*x>=3-5x-2x*x

Fast. Das gilt nur, wenn das Nennerpolynom positiv ist. Hast Du das geprüft? Es sollte auch nicht Null sein...

> 0>=2x²-7x-2|/2

[notok] Da stimmt noch was nicht in der Zusammenfassung.

> 0>=x²-3,5x-1
>  
> pq-Formel
>  
> x1,2=[mm] \bruch{7}{4}+-\wurzel{\bruch{49}{16}+1}[/mm]
>  
> L=[mm] \bruch{7}{4}-\wurzel{\bruch{49}{16}+1} [/mm]<x><[mm] \bruch{7}{4}+\wurzel{\bruch{49}{16}+1}[/mm]

Kann dann auch nicht stimmen. Wieso eigentlich $ < $ und nicht $ [mm] \le [/mm] $?

Grüße
reverend

</x>

Bezug
        
Bezug
Reelle x aus Wurzelbruch: Antwort
Status: (Antwort) fertig Status 
Datum: 09:50 So 14.11.2010
Autor: fred97


> Für welche reellen x sind folgende Ausdrücke definiert?
>  
> [mm]\wurzel{\bruch{2+3x-2x*x}{3-5x-2x*x}}[/mm]
>  Hallo,
>  
> zuerst:Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
>
> da der Term ja unter einer Wurzel steht muss:
>  [mm]\bruch{2+3x-2x*x}{3-5x-2x*x}>= 0[/mm] sein.
>  
> [mm]\bruch{2+3x-2x*x}{3-5x-2x*x}>= 0[/mm] |+1


Wozu addierst Du 1   ???


Ein Bruch a/b ist [mm] \ge [/mm] 0, genau dann, wenn (a [mm] \ge [/mm] 0 und b>0) oder  (a [mm] \le [/mm] 0 und b<0)

FRED

>  
> [mm]\bruch{2+3x-2x*x}{3-5x-2x*x}+1>= 1 [/mm]|*(3-5x-2x*x)
>  
> 2+3x-2x*x+3-5x-2x*x>=3-5x-2x*x
>  
> 0>=2x²-7x-2|/2
>  
> 0>=x²-3,5x-1
>  
> pq-Formel
>  
> x1,2=[mm] \bruch{7}{4}+-\wurzel{\bruch{49}{16}+1}[/mm]
>  
> L=[mm] \bruch{7}{4}-\wurzel{\bruch{49}{16}+1} [/mm]<x<[mm] \bruch{7}{4}+\wurzel{\bruch{49}{16}+1}[/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]