matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenReduzierte Stufenform, Kern
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - Reduzierte Stufenform, Kern
Reduzierte Stufenform, Kern < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reduzierte Stufenform, Kern: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:01 Mo 06.01.2014
Autor: kaykay_22

Aufgabe
Bestimme eine Basis des Zeilenraums von A.
Bestimme eine Basis des Kerns von A.

Ich habe bereits die reduzierte Stufenform für A:

[mm] \pmat{ 1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 } [/mm]

Als Basis des Zeilenraums habe ich einfach die drei Zeilenvektoren genommen, die keine Nullzeilen sind.

Jetzt will ich den Kern davon berechnen. Das müsste doch mit der reduzierten Stufenform auch gehen oder? Kann mir das jemand erklären?

Gruss und Merci

        
Bezug
Reduzierte Stufenform, Kern: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 Mo 06.01.2014
Autor: angela.h.b.


> Bestimme eine Basis des Zeilenraums von A.
>  Bestimme eine Basis des Kerns von A.
>  Ich habe bereits die reduzierte Stufenform für A:
>  
> [mm]\pmat{ 1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 }[/mm]
>  
> Als Basis des Zeilenraums habe ich einfach die drei
> Zeilenvektoren genommen, die keine Nullzeilen sind.

Hallo,

ja, das kannst Du tun.

Die führenden Zeilenelemente Deiner ZSF stehen in Spalte 1,3 und 5.
Also kannst Du die 2. und 4. Variable frei wählen.

Mit
[mm] x_2:=t [/mm] und
[mm] x_4:= [/mm] s

erhältst Du aus Zeile 3
[mm] x_5=0, [/mm]

aus Zeile 2
    [mm] x_3+4x_4=0 [/mm] <==>
[mm] x_3=-4s, [/mm]

und aus Zeile 1
    [mm] x_1+2x_2+3x_4=0 [/mm] <==>
[mm] x_1=-2t-3s. [/mm]

Alle Lösungsvektoren [mm] \vektor{x_1\\\vdots\\x_5} [/mm] haben die Gestalt

[mm] \vektor{x_1\\x_2\\x_3\\x_4\\x_5}=\vektor{-2t-3s\\t\\-4s\\s\\0}=t\vektor{-2\\1\\0\\0\\0}+s\vektor{-3\\0\\-4\\1\\0}, [/mm]

und die beiden Vektoren [mm] \vektor{-2\\1\\0\\0\\0},\vektor{-3\\0\\-4\\1\\0} [/mm] bilden zusammen eine Basis des Kerns.

Andere Vorgehensweise zur Bestimmung des Kerns, wenn man die red. ZSF hat:
Nullzeilen weg:

[mm] \pmat{ 1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 } [/mm] --> [mm] \pmat{ 1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 1 } [/mm]

Nullzeile so einscheiben, daß die führenden Zeilenelemente auf der Diagonalen stehen:

--> [mm] \pmat{ 1 & 2 & 0 & 3 & 0 \\ 0&0&0&0&0\\0 & 0 & 1 & 4 & 0 \\ 0&0&0&0&0\\0 & 0 & 0 & 0 & 1 } [/mm]

Einheitsmatrix subtrahieren:

---> [mm] \pmat{ 0& 2 & 0 & 3 & 0 \\ 0&-1&0&0&0\\0 & 0 & 0 & 4 & 0 \\ 0&0&0&-1&0\\0 & 0 & 0 & 0 & 0} [/mm]        

In den Nichtnullspalten steht nun eine Basis des Kerns.

LG Angela




>  
> Jetzt will ich den Kern davon berechnen. Das müsste doch
> mit der reduzierten Stufenform auch gehen oder? Kann mir
> das jemand erklären?
>  
> Gruss und Merci


Bezug
                
Bezug
Reduzierte Stufenform, Kern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Mo 06.01.2014
Autor: kaykay_22

Danke :-)

Sind beide Verfahren notwendig zu wissen? Also gibt es Möglichkeiten, dass eines der Verfahren nicht funktioniert? Oder reicht es z.B. nur das erste Verfahren zu können?

Bezug
                        
Bezug
Reduzierte Stufenform, Kern: Antwort
Status: (Antwort) fertig Status 
Datum: 13:54 Mo 06.01.2014
Autor: angela.h.b.

Hallo,

ein Verfahren reicht - falls es ein Begrenzung für Gepäckstücke gibt.

Die Verfahren funktionieren beide immer.

LG Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]