matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperReduzibilität von Polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gruppe, Ring, Körper" - Reduzibilität von Polynom
Reduzibilität von Polynom < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reduzibilität von Polynom: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:29 Di 08.04.2014
Autor: CJcom

Aufgabe
Untersuchen Sie folgendes Polynom auf Reduzibilität in K[x]:

[mm] x^{14}+x^{3}+x^{2}+4 [/mm] für [mm] K=\IQ [/mm]

Habe oben stehende Aufgabe zu lösen. Da Eisenstein hier nicht weiterhilft, habe ich überlegt, ob ich mit Substitution ein Polynom erhalte, mit dem ich besser arbeiten kann. Die Standardsubstitutionen y=x+1 und y=x-1 haben aber hier auch nicht weitergeführt.
Ich habe überlegt über das Reduktionskriterium auf die Irreduzibilität zu folgern. In [mm] \IF_{3} [/mm] zerfällt es zumindest nicht in Linearfaktoren. Allerdings müsste ich ja nun alle weiteren Fälle durchspielen und ausschließen und das ist bei grad 14 etwas nervig.
Gibt es irgendwelche Anregungen/ Kniffe bei der Aufgabe, die ich übersehen habe?

        
Bezug
Reduzibilität von Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Di 08.04.2014
Autor: abakus


> Untersuchen Sie folgendes Polynom auf Reduzibilität in
> K[x]:

>

> [mm]x^{14}+x^{3}+x^{2}+4[/mm] für [mm]K=\IQ[/mm]
> Habe oben stehende Aufgabe zu lösen. Da Eisenstein hier
> nicht weiterhilft, habe ich überlegt, ob ich mit
> Substitution ein Polynom erhalte, mit dem ich besser
> arbeiten kann. Die Standardsubstitutionen y=x+1 und y=x-1
> haben aber hier auch nicht weitergeführt.
> Ich habe überlegt über das Reduktionskriterium auf die
> Irreduzibilität zu folgern. In [mm]\IF_{3}[/mm] zerfällt es
> zumindest nicht in Linearfaktoren. Allerdings müsste ich
> ja nun alle weiteren Fälle durchspielen und ausschließen
> und das ist bei grad 14 etwas nervig.
> Gibt es irgendwelche Anregungen/ Kniffe bei der Aufgabe,
> die ich übersehen habe?

Hallo,
so richtig Elegantes kann ich nicht liefern. Aber: es lässt sich abschätzen, dass das Polynom keine Nullstellen besitzt.
Sollte es sich trotzdem in ein Produkt von Polynomen niedrigeren Grades zerlegen lassen, dann müsste die höchste Potenz von x eines jeden Faktors einen geraden Exponenten haben (ungerade Exponenten führen zwangsläufig zu Nullstellen).
Somit hast du nur 3 mögliche Fälle zu betrachten:
- Polynom 2. Grades mal Polynom 12. Grades
- Polynom 4. Grades mal Polynom 10. Grades 
- Polynom 6. Grades mal Polynom 8. Grades 
Gruß Abakus


 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]