matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraReduzibilität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - Reduzibilität
Reduzibilität < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reduzibilität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:59 Sa 18.03.2006
Autor: Skydiver

Aufgabe
I = [mm] \{a+b\sqrt{-3}|a,b \in Z\}; [/mm] I ist ein Integritätsbereich mit Einselement; es ist zu zeigen, dass 2 irreduzibel ist;

weiß nicht wirklich wie ich dabei vorgehen kann; bin für jeden Tipp dankbar!

mfg.

        
Bezug
Reduzibilität: Antwort
Status: (Antwort) fertig Status 
Datum: 11:12 Sa 18.03.2006
Autor: felixf


> I = [mm]\{a+b\sqrt{-3}|a,b \in Z\};[/mm] I ist ein
> Integritätsbereich mit Einselement; es ist zu zeigen, dass
> 2 irreduzibel ist;
>  weiß nicht wirklich wie ich dabei vorgehen kann; bin für
> jeden Tipp dankbar!

Ein Trick bei solchen Integritaetsbereichen (wenn unter der Wurzel was negatives steht) ist, sich die Normfunktion anzuschauen: $N : I [mm] \to \IZ$, [/mm] $x [mm] \mapsto |x|^2$. [/mm] Das $N(x) [mm] \in \IZ$ [/mm] fuer alle $x [mm] \in [/mm] I$ ist siehst du schnell, da ja $|a + b [mm] \sqrt{-3}| [/mm] = |a + b i [mm] \sqrt{3}| [/mm] = [mm] \sqrt{a^2 + 3 b^2}$ [/mm] ist.

Nun ist $N$ weiterhin multiplikativ, also gilt $N(x y) = N(x) N(y)$ fuer $x, y [mm] \in [/mm] I$. Daraus folgt insbesondere, dass Einheiten $x [mm] \in [/mm] R^*$ die Norm $N(x) = 1$ haben, und hier sieht man sofort, dass die einzigen Elemente mit Norm 1 gerade [mm] $\pm [/mm] 1$ sind (wenn du [mm] $\sqrt{-1}$ [/mm] haettest anstatt [mm] $\sqrt{-3}$ [/mm] kaemen auch noch [mm] $\pm [/mm] i$ hinzu, aber fuer [mm] $\sqrt{-d}$ [/mm] mit $d > 1$ sind es immer nur [mm] $\pm [/mm] 1$).

Insbesondere erhaelst du: $x [mm] \in [/mm] I$ ist Einheit genau dann, wenn $N(x) = 1$ ist.

So. Und jetzt siehst du natuerlich sofort, dass wenn $x$ ein Teiler von $y$ ist, dass dann auch $N(x)$ ein Teiler von $N(y)$ ist.

Jetzt nimm $y := 2$ und nimm an, dass $x$ ein Teiler von $y$ ist. Also gilt $N(x)$ teilt $N(y) = [mm] |2|^2 [/mm] = 4$. ...

Kommst du jetzt alleine weiter?

LG Felix


Bezug
                
Bezug
Reduzibilität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:35 Sa 18.03.2006
Autor: Skydiver

Besten Dank! Damit sollte ich das hinbekommen.

mfg.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]