matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenReduktionsmethode
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Reduktionsmethode
Reduktionsmethode < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reduktionsmethode: Ansatz
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:09 Sa 26.05.2012
Autor: Richie1401

Aufgabe
Bestimme die allgemeine Lösung der Differentialgleichung [mm] (2x-3x^3)y''+4y'+6xy=0. [/mm]
(Hinweis: Suche zunächst eine Lösung der Gestalt [mm] y(x)=x^p [/mm] mit geeignetem [mm] p\in\IR [/mm] und wende dann die Reduktionsmethode an.)

Einen wunderschönen Tag wünsche ich!

Ich sitze an der obigen Aufgabe und versuche schon lange ein geeignetes p zu finden, sodass [mm] y_1(x) [/mm] die DGL löst.
Ich habe bereits [mm] \pm1/2, \pm1, \pm2, \pm3 [/mm] versucht, doch nichts klappte.

Beispiel für [mm] y_1(x)=x^1 [/mm]
[mm] y_1'(x)=1 [/mm]
[mm] y_1''(x)=0 [/mm]

[mm] (2x-3x^3)*0+4*1+6x*x\not=0 [/mm]

Habe ich einfach etwas falsch gemacht, oder einen Denkfehler?

Danke für Eure Hilfe!

        
Bezug
Reduktionsmethode: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:54 Sa 26.05.2012
Autor: MathePower

Hallo Richie1401,

> Bestimme die allgemeine Lösung der Differentialgleichung
> [mm](2x-3x^3)y''+4y'+6xy=0.[/mm]
>  (Hinweis: Suche zunächst eine Lösung der Gestalt
> [mm]y(x)=x^p[/mm] mit geeignetem [mm]p\in\IR[/mm] und wende dann die
> Reduktionsmethode an.)
>  Einen wunderschönen Tag wünsche ich!
>  
> Ich sitze an der obigen Aufgabe und versuche schon lange
> ein geeignetes p zu finden, sodass [mm]y_1(x)[/mm] die DGL löst.
>  Ich habe bereits [mm]\pm1/2, \pm1, \pm2, \pm3[/mm] versucht, doch
> nichts klappte.
>


Poste dazu Deine bisherigen Rechenschritte.


> Beispiel für [mm]y_1(x)=x^1[/mm]
>  [mm]y_1'(x)=1[/mm]
>  [mm]y_1''(x)=0[/mm]
>  
> [mm](2x-3x^3)*0+4*1+6x*x\not=0[/mm]
>  
> Habe ich einfach etwas falsch gemacht, oder einen
> Denkfehler?
>  
> Danke für Eure Hilfe!


Gruss
MathePower

Bezug
                
Bezug
Reduktionsmethode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Sa 26.05.2012
Autor: Richie1401

Ok, Gerne. Ich habe extra für p=1 einfach mal das Beispiel angeführt. Dann hier noch einmal die anderen.

p=1/2

[mm] y=\wurzel{x} [/mm]
[mm] y'=\bruch{1}{2\wurzel{x}} [/mm]
[mm] y''=-\bruch{1}\{4\wurzel{x^3}} [/mm]

[mm] -\bruch{2x-3x^3}{4\wurzel{x^3}}+\bruch{4}{2\wurzel{x}}+6x\wurzel{x}\not=0 [/mm]

p=2

[mm] y=x^2 [/mm]
y'=2x
y''=2

[mm] 4x-6x^3+4*2x+6x^3=12x\not=0 [/mm]

p=-2

[mm] y=x^{-2} [/mm]
[mm] y'=-2x^{-3} [/mm]
[mm] y''=6x^{-4} [/mm]

[mm] \bruch{12x-18x^3}{x^4}-\bruch{8}{x^3}+\bruch{6}{x}=\bruch{4-12x^2}{x^3}\not=0 [/mm]

...

Je größer jetzt auch die Potenzen werden, umso schlimmer wird das Verhalten. :(

Bezug
                        
Bezug
Reduktionsmethode: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 Sa 26.05.2012
Autor: MathePower

Hallo Richie1401,

> Ok, Gerne. Ich habe extra für p=1 einfach mal das Beispiel
> angeführt. Dann hier noch einmal die anderen.
>  
> p=1/2
>  
> [mm]y=\wurzel{x}[/mm]
>  [mm]y'=\bruch{1}{2\wurzel{x}}[/mm]
>  [mm]y''=-\bruch{1}\{4\wurzel{x^3}}[/mm]
>  
> [mm]-\bruch{2x-3x^3}{4\wurzel{x^3}}+\bruch{4}{2\wurzel{x}}+6x\wurzel{x}\not=0[/mm]
>  
> p=2
>  
> [mm]y=x^2[/mm]
>  y'=2x
>  y''=2
>  
> [mm]4x-6x^3+4*2x+6x^3=12x\not=0[/mm]
>  
> p=-2
>  
> [mm]y=x^{-2}[/mm]
>  [mm]y'=-2x^{-3}[/mm]
>  [mm]y''=6x^{-4}[/mm]
>  
> [mm]\bruch{12x-18x^3}{x^4}-\bruch{8}{x^3}+\bruch{6}{x}=\bruch{4-12x^2}{x^3}\not=0[/mm]
>  
> ...
>  
> Je größer jetzt auch die Potenzen werden, umso schlimmer
> wird das Verhalten. :(


Mache doch wirklich den Ansatz mit unbekanntem p.
Führe dann einen Vergleich der x-Potenzen durch.
Dann kommst Du auf p.


Gruss
MathePower

Bezug
                                
Bezug
Reduktionsmethode: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:37 Sa 26.05.2012
Autor: Richie1401

Oh mein Gott...

Ich hatte wie ein schwimmriges Band vor meinen Augen.

p=-1 löst die DGL und somit kann ich nun weiterarbeiten. Unglaublich wie verklemmt ich hier war und wie viel Zeit ich investiert habe.

Vielen Dank für deine forschen Worte.
Ich wünsche ein schönes Wochenende.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]