matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenRechteckfunktion als Störglied
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Rechteckfunktion als Störglied
Rechteckfunktion als Störglied < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechteckfunktion als Störglied: Bestimmung einer spez. Lösung
Status: (Frage) beantwortet Status 
Datum: 00:14 Di 08.12.2009
Autor: Lughor

Aufgabe
Es sei [mm] f(t)=\begin{cases} 1 \mbox{ , wenn t } \in [2k, 2k+1], \mbox{ mit k} \in \IN \cup \{ 0 \} \\ 0 \mbox{ sonst} \end{cases} [/mm]
Wir betrachten die Differentialgleichung x''(t) + x'(t) + 3x(t) = f(t).

(a) Welchen inhaltlichen Sinn hat diese Differentialgleichung?
(b) Klassifizieren Sie die Dgl.
(c) Welche Möglichkeiten sehen Sie, das zugehörige Anfangswertproblem x(0)=0, x'(0)=0 zu lösen, sagen wir für t [mm] \ge [/mm] 0?
(Es geht darum, einen Weg oder gar mehrere Wege zu beschreiben, dabei eine möglichst weitgehende Anweisung zu geben, ohne diese komplett auszuführen.)

Zu meinen Problemen.

(a) Fällt jemanden mehr Sinn ein als Schwingungsgleichung im Schwingfall?

(b) Dürfte ziemlich klar sein.
Lineare DGL 2. Ord., inhomogen, exlizit (sofort in explizite Form schreibbar) und autonom.

(c) Die homogene Lösung kann man sofort mit der Lösungsformel für die Schwingungsgleichung schreiben. Dann noch die Anfangsbedingung eingesetzt und ich komme auf: x(t)=0 .
Ziemlich langweilig und ich habe mich hoffentlich nicht vertan, aber die Lösung erfüllt die homogene DGL und auch das AWP.


Jetzt aber das Problem mit der speziellen Lösung.
Stückweise ist f(t) konstant, aber trotzdem kann man das Störglied nicht als Konstant betrachten. Würde man die spezielle Lösung zweigeteilt berechnen, so käme man auf x(t)=0 für f(t)=0 und [mm] x(t)=\bruch{1}{3} [/mm] für f(t)=1.
Dann wäre aber x(t) nicht mehr stetig und damit auch nicht mehr diffbar.
Da aber die Lösung nur auf einem Intervall erklärt ist, wäre sie nur auf [0,1) für k=0 bzw. auf [0,2k) sonst erklärt.

Was meint ihr?
Kennt ihr andere Lösungswege?
Ergeben meine Ausführungen soweit Sinn?

Würde mich über baldige Hilfe freuen.

        
Bezug
Rechteckfunktion als Störglied: Antwort
Status: (Antwort) fertig Status 
Datum: 00:41 Di 08.12.2009
Autor: leduart

Hallo
ich seh nur den Weg, f(t) in ne Fourrierreihe zu entwickeln, und dann mit mehr oder weniger vielen gliedern zu arbeiten.
Gruss leduart

Bezug
                
Bezug
Rechteckfunktion als Störglied: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:28 Di 08.12.2009
Autor: Lughor

Fourierreihen sind leider nicht Thema der Vorlesung, daher auch als Lösung nicht so ideal. Allerdings sind Reihen und Funktionenfolgen durchaus Thema, so dass solche Ansätze möglich wären.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]