matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeRechteck in Halbkreis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Extremwertprobleme" - Rechteck in Halbkreis
Rechteck in Halbkreis < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechteck in Halbkreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Di 27.06.2006
Autor: EdmondDantes

Aufgabe
Einem Halbkreis mit dem Radius r soll ein Rechteck mit möglichst großem Flächeninhalt einbeschrieben werden. Wie groß sind die Seiten des Rechtecks?

Es ist ziemlich lange her, dass ich mit Extremwertaufgeben hantiert habe und entsprechend hab ich auch (fast) keine Ahnung mehr wie das funktionierte.

Ich bin das mal wie folgt angegangen:

[Dateianhang nicht öffentlich]

[mm] A_{\Box}\to [/mm] max
[mm] A_{\Box}=2*s*t [/mm]
[mm] s^{2}=r^{2}-t^{2} \Rightarrow A_{\Box}=2*(r^{2}-t^{2})*t [/mm]

[mm] A_{\Box}^{'}(t) [/mm] ist dann aber [mm] (2r^{2} [/mm] - [mm] 6t^{2}) [/mm] und ich frage mich wie ich weiter vorgehen kann. r ist hier ja als Konstante Größe zu betrachten und ich weiß nun, dass die Gleichung [mm] A_{\Box}=2*(r^{2}-t^{2})*t [/mm] bei [mm] (2r^{2} [/mm] - [mm] 6t^{2}) [/mm] eine waagerechte Tangente hat. [mm] A_{\Box}^{''} [/mm] ist dann aber -12t, ist also immernoch von t abhängig. Das Krümmungsverhalten lässt sich so doch nicht eindeutig festlegen. Erst [mm] A_{\Box}^{'''} [/mm] schließlich liefert -12 als Wert, der auf ein Maximum schließen ließe.

...ich wäre sehr verbunden, wenn mir wer weiterhelfen könnte, hab ich was grundlegend falsch gemacht? Oder fehlt was in meiner Erinnerung an diese Extremwertaufgaben (könnte leicht möglich sein ;-) )?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Rechteck in Halbkreis: Erläuterungen
Status: (Antwort) fertig Status 
Datum: 15:47 Di 27.06.2006
Autor: Roadrunner

Hallo EdmondDantes!



> [mm]s^{2}=r^{2}-t^{2} \Rightarrow A_{\Box}=2*(r^{2}-t^{2})*t[/mm]

Hier hast Du eine Wurzel unterschlagen, da in der Flächenformel nur $s_$ steht und nicht [mm] $s^2$ [/mm] :

[mm] $A_{\Box} [/mm] \ = \ [mm] 2*\wurzel{r^{2}-t^{2}}*t$ [/mm]

  

> r ist hier ja als Konstante Größe zu betrachten

[ok]


> und ich weiß nun, dass die Gleichung [mm]A_{\Box}=2*(r^{2}-t^{2})*t[/mm]
> bei [mm](2r^{2}[/mm] - [mm]6t^{2})[/mm] eine waagerechte Tangente hat.

Du musst aber die Gleichung (ich bleibe mal bei dieser falschen Ableitung) [mm] $2r^2-6t^2 [/mm] \ [mm] \red{= \ 0}$ [/mm] auch noch nach $t \ = \ ...$ umstellen...


> [mm]A_{\Box}^{''}[/mm] ist dann aber -12t, ist also immernoch von t abhängig.

... und dann hier in die 2. Ableitung einsetzen. Damit es sich um ein Maximum handelt, muss gelten:  [mm] $A''(t_e) [/mm] \ [mm] \red{<} [/mm] \ 0$ (hinreichendes Kriterium).


Gruß vom
Roadrunner


Bezug
                
Bezug
Rechteck in Halbkreis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:50 Di 27.06.2006
Autor: EdmondDantes

Ok, ich hab mich wie befürchtet einfach nur dumm angestellt, gepaart mit derben Erinnerungslücken und müdigkeitsbedingten Fehlzündungen kam das dann dabei raus ;-) danke Roadrunner

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]