Rechteck an Funktionsgraph < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Gegeben ist die Parabel f(x)=6-x². Der Funktionsgrah zu f schließt mit der x-Achse eine Fläche ein, der ein Rechteck mit möglichst großem Flächeninhalt so einbeschrieben werden soll, dass eine SEite des Rechtecks auf der x-Achse liegt. Wie groß ist die gesuchte Fläche? |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Also, die Zielfunktion A=a*b ist klar und die Nebenbedingung b=y und a=2x, woraus die Zielfunktion A=2x*(6-x²) entsteht, ist auch logisch. Allerdings bekomme ich dabei komische Lösungen und bräuchte unbedingt Hilfe. Ich möchte wissen ob die Ansätze richtig sind und was als Ergebnis wirklich herrauskommt. Und welchen Definitionsbereich müsste ich wählen? Ich bin total verzweifelt, weil wir morgen die Matheklausur schreiben... Vielen Dank schonmal im Voraus für Eure Hilfe!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:10 Mi 27.09.2006 | Autor: | M.Rex |
Hallo und
> Gegeben ist die Parabel f(x)=6-x². Der Funktionsgrah zu f
> schließt mit der x-Achse eine Fläche ein, der ein Rechteck
> mit möglichst großem Flächeninhalt so einbeschrieben werden
> soll, dass eine SEite des Rechtecks auf der x-Achse liegt.
> Wie groß ist die gesuchte Fläche?
>
> Also, die Zielfunktion A=a*b ist klar und die
> Nebenbedingung b=y und a=2x, woraus die Zielfunktion
> A=2x*(6-x²) entsteht, ist auch logisch. Allerdings bekomme
> ich dabei komische Lösungen und bräuchte unbedingt Hilfe.
> Ich möchte wissen ob die Ansätze richtig sind und was als
> Ergebnis wirklich herrauskommt. Und welchen
> Definitionsbereich müsste ich wählen? Ich bin total
> verzweifelt, weil wir morgen die Matheklausur schreiben...
> Vielen Dank schonmal im Voraus für Eure Hilfe!
Wenn du deineLösunghier posten würdest, kann dir eher geholfen werden.
Deine Zielfunktion ist korrekt.
A(x)=2x*(6-x²)=12x-2x³
Hiervon suchst du nun einen Hochpunkt im Bereich (Intervall) [-6;6]
Also suchst du einen Extrempunkt.
Dazu suchst du die Nullstellen der esten Ableitung A'(x)=-6x²+12
Also -6x²+12=0
[mm] \gdw x=\pm\wurzel{2}
[/mm]
Marius
|
|
|
|