matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesRechteck
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Rechteck
Rechteck < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechteck: Rechteck Eckpunkte ausrechnen
Status: (Frage) beantwortet Status 
Datum: 13:45 Mo 25.08.2014
Autor: Dante19

Aufgabe
ein Punkt im Raum soll den Mittelpunkt (Mx,My)eines Rechteckes darstellen.
Die Drehung (yaw) um diesen Punkt ist gegeben, sowie die Längenbastände(b,h) des Rechtexks. Die eckpunkte sollen ausgerechnet werden, diese müssen immer positiv sein, da die Punkte mx und my immer positiv sind.

Ich bin wie folgt vorgegangen, jedoch ist mein Weg nicht richtig

A ----- B
  Mx/My
C -----D

Ax = Mx - b/2
Ay = My + h/2

Bx = Mx + b/2
By = My + h/2

Cx = Mx - b/2
Cy = My - h/2

Dx = Mx + b/2
Dy = My - h/2

Axneu = ((Ax * cos(yaw))+(Ay * (-sin(yaw))) );
Ayneu = ((Ax * cos(yaw))+(Ay * (-sin(yaw))) );

Bxneu = ((Bx * cos(yaw))+(By * (-sin(yaw))) );
Byneu = ((Bx * cos(yaw))+(By * (-sin(yaw))) );

Cxneu = ((Cx * cos(yaw))+(Cy * (-sin(yaw))) );
Cyneu = ((Cx * cos(yaw))+(Cy * (-sin(yaw))) );

Dxneu = ((Dx * cos(yaw))+(Dy * (-sin(yaw))) );
Dyneu = ((Dx * cos(yaw))+(Dy * (-sin(yaw))) );

        
Bezug
Rechteck: Antwort
Status: (Antwort) fertig Status 
Datum: 13:55 Mo 25.08.2014
Autor: fred97


> ein Punkt im Raum soll den Mittelpunkt (Mx,My)eines
> Rechteckes darstellen.
>  Die Drehung (yaw) um diesen Punkt ist gegeben, sowie die
> Längenbastände(b,h) des Rechtexks. Die eckpunkte sollen
> ausgerechnet werden, diese müssen immer positiv sein, da
> die Punkte mx und my immer positiv sind.
>  Ich bin wie folgt vorgegangen, jedoch ist mein Weg nicht
> richtig
>  
> A ----- B
>    Mx/My
>  C -----D
>  
> Ax = Mx - b/2
>  Ay = My + h/2
>  
> Bx = Mx + b/2
>  By = My + h/2
>  
> Cx = Mx - b/2
>  Cy = My - h/2
>  
> Dx = Mx + b/2
>  Dy = My - h/2

So weit ist das O.K.


>  
> Axneu = ((Ax * cos(yaw))+(Ay * (-sin(yaw))) );
>  Ayneu = ((Ax * cos(yaw))+(Ay * (-sin(yaw))) );

Das beschreibt keine Drehung um den Punkt (Mx,My) !

Google mal "Drehmatrix"

FRED

>  
> Bxneu = ((Bx * cos(yaw))+(By * (-sin(yaw))) );
>  Byneu = ((Bx * cos(yaw))+(By * (-sin(yaw))) );
>  
> Cxneu = ((Cx * cos(yaw))+(Cy * (-sin(yaw))) );
>  Cyneu = ((Cx * cos(yaw))+(Cy * (-sin(yaw))) );
>  
> Dxneu = ((Dx * cos(yaw))+(Dy * (-sin(yaw))) );
>  Dyneu = ((Dx * cos(yaw))+(Dy * (-sin(yaw))) );


Bezug
                
Bezug
Rechteck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:11 Mo 25.08.2014
Autor: Dante19

Die Drehmatrix im 2 dimensionalen Raum ist doch

R=( cos (alpha)       -sin(alpha))
       sin(alpha)          cos(alpha))

wenn ich einen vektor um einen bestimmten winkel alpha drehe so rechne ich
:

R*V, wobei v = (vx,vy) ist

x = cos (alpha)*vx       -sin(alpha)*vy
Y=  sin(alpha)*vx          cos(alpha)*vy

Ich muss noch erwähnen die Werte Mx und My sind veränderlich

Bezug
                        
Bezug
Rechteck: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Mo 25.08.2014
Autor: Event_Horizon

Hallo!

> Die Drehmatrix im 2 dimensionalen Raum ist doch
>
> R=( cos (alpha)       -sin(alpha))
>         sin(alpha)          cos(alpha))
>  
> wenn ich einen vektor um einen bestimmten winkel alpha
> drehe so rechne ich
>  :
>  
> R*V, wobei v = (vx,vy) ist
>  
> x = cos (alpha)*vx       -sin(alpha)*vy
>  Y=  sin(alpha)*vx          cos(alpha)*vy
>  

So weit ist das auch korrekt, aber du schreibst

> Axneu = ((Ax * cos(yaw))+(Ay * (-sin(yaw))) );
> Ayneu = ((Ax * cos(yaw))+(Ay * (-sin(yaw))) );

und das ist nicht das gleiche!


> Ich muss noch erwähnen die Werte Mx und My sind
> veränderlich

Das ist generell noch ein Punkt. Und während ich vermute, daß obiges nur ein Schreibfehler hier im Forum ist, ist das mit dem Mittelpunkt wohl eher dein Problem:

Die Drehmatrix beschreibt eine Rotation um den Ursprung. Somit wird dein gesamtes Rechteck nach deiner Rechnung um den Ursprung gedreht.
Du solltest ERST die Vier Ecken auf [mm] $(\pm [/mm] b/2\ |\ [mm] \pm [/mm] h/2)$ setzen (Dann hast du ein Rechteck, dessen Mitte im Ursprung ist), dann drehen, und dann [mm] \vec{m} [/mm] hinzuaddieren.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]