matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieRechnen mit Quersummen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Zahlentheorie" - Rechnen mit Quersummen
Rechnen mit Quersummen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechnen mit Quersummen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:59 Fr 12.02.2010
Autor: durden88

Aufgabe
Bestimmen Sie alle natürlichen Zahlen n ≥1, für die die Gleichung Q(n −1) = 2⋅Q(n +1)
gilt. Beweisen Sie Ihre Antwort.

Ich kann mein n ja auch als Dezimal schreiben.Also in dieser Aufgabe muss man 3 Fälle unterscheiden. a= 0 , [mm] 1\le [/mm] a [mm] \le [/mm] 8  und a= 9. Naja wieso macht das das?
Meine Vermutung war, dass wenn ich n=10 habe es nur bis 9 geht wegen - 1 .....

Ich weiss aber absolut nicht weiter und wie ich ran gehen soll :( Kann mir da einer weiterhelfen? Danke!

        
Bezug
Rechnen mit Quersummen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Fr 12.02.2010
Autor: statler

Hi!

> Bestimmen Sie alle natürlichen Zahlen n ≥1, für die die
> Gleichung Q(n −1) = 2⋅Q(n +1)
>  gilt. Beweisen Sie Ihre Antwort.
>  Ich kann mein n ja auch als Dezimal schreiben.Also in
> dieser Aufgabe muss man 3 Fälle unterscheiden. a= 0 , [mm]1\le[/mm]
> a [mm]\le[/mm] 8  und a= 9. Naja wieso macht das das?
> Meine Vermutung war, dass wenn ich n=10 habe es nur bis 9
> geht wegen - 1 .....
>  
> Ich weiss aber absolut nicht weiter und wie ich ran gehen
> soll :( Kann mir da einer weiterhelfen? Danke!

Dein Text ist für mich ziemlich mysteriös. Um mal auf das 'Rangehen' zu sprechen zu kommen: Die Quersumme der kleineren Zahl soll doppelt so groß sein wie die der um 2 größeren Zahl. Das funktioniert jedenfalls schon mal nicht, wenn die kleinere Zahl (n-1) als letzte Dezimalziffer eine Zahl zwischen 0 und 7 hat.

Mit einer 8 am Schluß geht z. B. 68 als n-1. Mit einer 9 entsprechend 59. Gibt es weitere? Wie sehen sie aus? Ist da ein System zu erkennen?

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]