matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikRechenregeln für Konvergenzbeg
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Rechenregeln für Konvergenzbeg
Rechenregeln für Konvergenzbeg < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rechenregeln für Konvergenzbeg: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:18 Mi 16.12.2009
Autor: Peon

Aufgabe
Seien [mm] (X_n)_{n\in \IN}, [/mm] X bzw. [mm] (Y_n)_{n\in \IN}, [/mm] Y reelle ZV auf [mm] (\Omega, \mathcal{A}, [/mm] P) und a [mm] \in \IR [/mm] konstant. Beweisen Sie die folgenden Aussagen:
[mm] X_n \to [/mm] X (konvergent nach Verteilung, D), (n [mm] \to \infty) [/mm] und [mm] Y_n \to [/mm] a (stochastisch, P), (n [mm] \to \infty) [/mm]
=> a) [mm] X_n+Y_n \to [/mm] (D) X+a (n [mm] \to \infty) [/mm]
b) [mm] X_nY_n \to [/mm] (D) aX (n [mm] \to \infty) [/mm] (a>0).

Hallo,

es wäre super wenn mir jemand einen Denkanstoß geben könnte, ich habe grad keine Ahnung, wie ich das zeigen kann.

Danke

        
Bezug
Rechenregeln für Konvergenzbeg: Tipp aus dem Tutorium
Status: (Frage) überfällig Status 
Datum: 21:17 Mi 16.12.2009
Autor: MiguelVal

Tipp aus dem Tutorium:
"Hifreich ist die Beweistechnik von Bemerkung 6.1.a)"

Wir sind im Tutorium den Beweis zu Bemerkung 6.1.a) nochmals durchgegangen. Dabei sollte ja gezeigt werden, dass aus der stochastischen Konvergenz (nach wahrscheinlichkeit) die  Konvergenz nach Verteilung ( schwach) folgt. Dabei wurde Fn (z) zunächst nach oben abgeschätzt mit dem limsup und anschließend nach unten mit liminf. Es stellte sich dann heraus, dass die beiden gleich F(z) sind und somit gilt Fn(z)= F(z) [mm] (n\to\infty) [/mm]

bei der Aufgabe hier nun ist es mir gelungen Fn(z):=P(Xn+Yn [mm] \le [/mm] z) nach oben letztlich gegen P(X+a [mm] \le [/mm] z) =  F(z) abzuschätzen.
Aber bei der Abschätzung nach unten harperts es bei mir noch. Ich schaffe es nicht eine Ungleichung mit P(Xn+Yn [mm] \le [/mm] z) [mm] \ge [/mm] irgendetwas zu konstruieren...
evtl. kann mir jemand helfen?

Grüße und danke im Voraus

Bezug
                
Bezug
Rechenregeln für Konvergenzbeg: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:21 Do 17.12.2009
Autor: Bibijana

Ist wahrscheinlich eine total blöde Frage, aber ich verstehe nicht warum das nicht geht
[mm] Y_{n}\to(stochastisch [/mm] (P))a [mm] \Rightarrow Y_{n}\to [/mm] (nach Verteilung(D))a
Also:
[mm] \limes_{n\rightarrow\infty} (X_{n}+Y_{n})=\limes_{n\rightarrow\infty}X_{n}+\limes_{n\rightarrow\infty}Y_{n}=X_{n}+a [/mm]

Bezug
                        
Bezug
Rechenregeln für Konvergenzbeg: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Sa 19.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
Rechenregeln für Konvergenzbeg: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mo 21.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Rechenregeln für Konvergenzbeg: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mo 21.12.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]