matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisRealteil und Imaginärteil
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Realteil und Imaginärteil
Realteil und Imaginärteil < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Realteil und Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Mo 06.11.2006
Autor: geligruendler

Aufgabe
Ermitteln Sie den Real - und den Imaginärteil der Zahl z = [mm] (1+i)^8. [/mm]

Ich komme bei dieser Aufgabe nicht voran. Hat einer von euch einen Tipp oder Lösungsvorschlag?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Realteil und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 Mo 06.11.2006
Autor: galileo

Hi geligruendler

Du kannst die trigonometrische Form einer komplexen Zahl benutzen, und die Formel:

[mm] (\cos\varphi +i\sin\varphi)^{n}=\cos n\varphi +i\sin n\varphi [/mm]

Also:

[mm] 1+i=\wurzel{2}\left( \cos\bruch{\pi}{4}+i\sin\bruch{\pi}{4}\right) [/mm]
[mm] (1+i)^8=16(\cos 2\pi+i\sin 2\pi)=16*1+i*16*0=16 [/mm]

Alles klar? :-)

Schöne Grüße
galileo

Bezug
                
Bezug
Realteil und Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 Mo 06.11.2006
Autor: geligruendler

Ist das jetzt Real oder Imaginärteil?

Bezug
                        
Bezug
Realteil und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Mo 06.11.2006
Autor: galileo

Ein komplexer Zahl kann immer in der Form

z=a+ib

geschrieben werden, wo der reelle Zahl "a" Realteil. und der reelle Zahl "b" Imagimärteil heissen.
In unserem Fall

z=16

Realteil ist gleich 16
Imaginärteil ist gleich 0

Gruss galileo

Bezug
                                
Bezug
Realteil und Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:23 Mo 06.11.2006
Autor: rollo

der betrag ist doch definiert durch [mm] |z|=\wurzel{a^{2} + b{2}} [/mm] , wie komm ich dann auf die 16?

Bezug
                                        
Bezug
Realteil und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Mo 06.11.2006
Autor: galileo


> der betrag ist doch definiert durch [mm]|z|=\wurzel{a^{2} + b{2}}[/mm]
> , wie komm ich dann auf die 16?


z = 1+i,  
[mm] |z|=\wurzel{1^2+1^2}=\wurzel{2} [/mm]

[mm] |z|^8=\left( \wurzel{2}\right)^8=2^4=16 [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]