matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisRealteil einer holomorphen Fkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Realteil einer holomorphen Fkt
Realteil einer holomorphen Fkt < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Realteil einer holomorphen Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 Di 12.05.2015
Autor: Calculu

Aufgabe
Ist die Funktion u: [mm] \IC \to \IR [/mm] Realteil einer holomorphen Funktion auf [mm] \IC? [/mm]
Bestimmen Sie ggf. die Funktion v: [mm] \IC \to \IR, [/mm] für die u+iv holomorph auf [mm] \IC [/mm] ist.
u(x,y) = [mm] x^{3}-3xy^{2} [/mm]

Hallo.
Ich habe folgende Überlegungen angestellt:
Annahme: Es exist. v: [mm] \IC \to \IR [/mm] so, dass u+iv holomorph ist. Dann sind die CR-DGL'n erfüllt und es gilt:
[mm] 3x^{2}-3y^{2}= v_{y} [/mm] und 6xy = [mm] v_{x} [/mm] für alle (x,y) [mm] \in \IR^{2}. [/mm]

Mit dem HDI folgt:
v(x,y)-v(x,0) = [mm] \integral_{0}^{y}{v_{y}(x,u) du}=3x^{2}y-y^{3} [/mm]
bzw:
v(x,y)-v(0,y) = [mm] \integral_{0}^{x}{v_{x}(u,y) du}=3x^{2}*y [/mm]
Für alle (x,y) [mm] \in \IR^{2} [/mm]

Nun muss ich aber irgendwie v(x,y) bestimmen. Aber leider weiß ich nicht genau wie ich das machen soll.
Über einen Tipp wäre ich sehr dankbar.

Viele Grüße.

        
Bezug
Realteil einer holomorphen Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Di 12.05.2015
Autor: Gonozal_IX

Hiho,

oder ohne den Hauptsatz:

>  [mm]3x^{2}-3y^{2}= v_{y}[/mm] und 6xy = [mm]v_{x}[/mm] für alle (x,y) [mm]\in \IR^{2}.[/mm]

$v(x,y) = 3x^2y - [mm] y^3 [/mm] + [mm] c_1(x)$ [/mm] und
$v(x,y) = 3x^2y + [mm] c_2(y)$ [/mm]

D.h. es stellt sich die Frage, ob es Funktionen [mm] $c_1,c_2: \IR \to \IR$ [/mm] so dass:

[mm] $3xy^2 [/mm] - [mm] y^3 [/mm] + [mm] c_1(x) [/mm] = 3x^2y + [mm] c_2(y)$ [/mm] gilt.

bzw: [mm] $c_1(x) [/mm] - [mm] c_2(y) [/mm] = [mm] y^3$ [/mm]

Gruß,
Gono

Bezug
                
Bezug
Realteil einer holomorphen Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Di 12.05.2015
Autor: Calculu


> Hiho,
>  
> oder ohne den Hauptsatz:
>  
> >  [mm]3x^{2}-3y^{2}= v_{y}[/mm] und 6xy = [mm]v_{x}[/mm] für alle (x,y) [mm]\in \IR^{2}.[/mm]

>  
> [mm]v(x,y) = 3x^2y - y^3 + c_1(x)[/mm] und
>  [mm]v(x,y) = 3x^2y + c_2(y)[/mm]
>  
> D.h. es stellt sich die Frage, ob es Funktionen [mm]c_1,c_2: \IR \to \IR[/mm]
> so dass:
>  
> [mm]3xy^2 - y^3 + c_1(x) = 3x^2y + c_2(y)[/mm] gilt.
>  
> bzw: [mm]c_1(x) - c_2(y) = y^3[/mm]
>  
> Gruß,
>  Gono

Danke für deine Antwort.
Also zu [mm] c_1(x) [/mm] - [mm] c_2(y) [/mm] = [mm] y^3 [/mm] fällt mir nur ein, dass für y=0 gilt:
[mm] c_1(x) [/mm] = [mm] c_2(0) [/mm]

Aber so richtig weiß ich dann auch nicht weiter. :-(



Bezug
                        
Bezug
Realteil einer holomorphen Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Di 12.05.2015
Autor: Gonozal_IX

Hiho,

Hiho,

> Danke für deine Antwort.
>  Also zu [mm]c_1(x)[/mm] - [mm]c_2(y)[/mm] = [mm]y^3[/mm] fällt mir nur ein, dass für y=0 gilt:
>  [mm]c_1(x)[/mm] = [mm]c_2(0)[/mm]
>  
> Aber so richtig weiß ich dann auch nicht weiter. :-(

Formen wir nochmal um:

[mm] $c_1(x) [/mm] = [mm] y^3 [/mm] + [mm] c_2(y)$ [/mm]

Nun steht links etwas, was nur von x abhängt, rechts etwas, was nur von y abhängt.

Wenn die Gleichheit trotzdem für alle x,y gelten soll, was kann dann die linke und rechte Seite nur sein?

Gruß,
Gono

Bezug
                                
Bezug
Realteil einer holomorphen Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Di 12.05.2015
Autor: Calculu


> Hiho,
>  
> Hiho,
>  
> > Danke für deine Antwort.
>  >  Also zu [mm]c_1(x)[/mm] - [mm]c_2(y)[/mm] = [mm]y^3[/mm] fällt mir nur ein, dass
> für y=0 gilt:
>  >  [mm]c_1(x)[/mm] = [mm]c_2(0)[/mm]
>  >  
> > Aber so richtig weiß ich dann auch nicht weiter. :-(
>  
> Formen wir nochmal um:
>  
> [mm]c_1(x) = y^3 + c_2(y)[/mm]
>  
> Nun steht links etwas, was nur von x abhängt, rechts
> etwas, was nur von y abhängt.
>  
> Wenn die Gleichheit trotzdem für alle x,y gelten soll, was
> kann dann die linke und rechte Seite nur sein?
>  

Irgendeine Konstante?!

> Gruß,
>  Gono


Bezug
                                        
Bezug
Realteil einer holomorphen Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Di 12.05.2015
Autor: Gonozal_IX

Hiho,

> Irgendeine Konstante?!

[ok]

Sei diese Konstante [mm] $c\in\IR$, [/mm] dann gilt also:

[mm] $c_1(x) \equiv [/mm] c, [mm] c_2(y) [/mm] = [mm] -y^3 [/mm] + c$

Was ergibt sich damit für v?

Gruß,
Gono

Bezug
                                                
Bezug
Realteil einer holomorphen Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Di 12.05.2015
Autor: Calculu


> Hiho,
>  
> > Irgendeine Konstante?!
>  [ok]
>  
> Sei diese Konstante [mm]c\in\IR[/mm], dann gilt also:
>  
> [mm]c_1(x) \equiv c, c_2(y) = -y^3 + c[/mm]
>  
> Was ergibt sich damit für v?

Achso, v(x,y) = [mm] 3x^{2}y-y^{3}+c [/mm]
Richtig?

>  
> Gruß,
>  Gono


Bezug
                                                        
Bezug
Realteil einer holomorphen Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 18:42 Di 12.05.2015
Autor: Gonozal_IX

Hiho,

> Achso, v(x,y) = [mm]3x^{2}y-y^{3}+c[/mm]
>  Richtig?

Für welches [mm] $c\in\IR$? [/mm]
Und: Obs richtig ist, kannst du doch selbst kontrollieren!

Gruß,
Gono

Bezug
                                                                
Bezug
Realteil einer holomorphen Fkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:42 Mi 13.05.2015
Autor: Calculu


> Hiho,
>  
> > Achso, v(x,y) = [mm]3x^{2}y-y^{3}+c[/mm]
>  >  Richtig?
>  
> Für welches [mm]c\in\IR[/mm]?

Für alle c [mm] \in \IR [/mm]

>  Und: Obs richtig ist, kannst du doch selbst
> kontrollieren!

Ja, stimmt. Ist richtig ;-)  


> Gruß,
>  Gono


Bezug
        
Bezug
Realteil einer holomorphen Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 09:45 Mi 13.05.2015
Autor: fred97

Noch eine Möglichkeit: ist f holomorph und u=Re(f), so ist

  [mm] f'=u_x+iv_x=u_x-iu_y=3x^2-3y^2+i6xy=3(x^2-y^2+2ixy)=3z^2, [/mm]

also: [mm] f(z)=z^3 [/mm] (+c)

FRED

Bezug
                
Bezug
Realteil einer holomorphen Fkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:44 Mi 13.05.2015
Autor: Calculu


> Noch eine Möglichkeit: ist f holomorph und u=Re(f), so
> ist
>  
> [mm]f'=u_x+iv_x=u_x-iu_y=3x^2-3y^2+i6xy=3(x^2-y^2+2ixy)=3z^2,[/mm]
>  
> also: [mm]f(z)=z^3[/mm] (+c)
>  
> FRED

Genial. Danke! :-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]