matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenReal, Imaginärteil und Betrag
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - Real, Imaginärteil und Betrag
Real, Imaginärteil und Betrag < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Real, Imaginärteil und Betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Sa 19.11.2011
Autor: Pia90

Hallo!

Ich brauche nochmal eure Hilfe und zwar geht es um komplexe Zahlen.

Ich soll für die komplexe Zahl [mm] (1+i)^n [/mm] mit n [mm] \in \IN [/mm] Real und Imaginärteil und den Betrag angeben.

Eigentlich hab ich mit dem Bestimmen von Real und Imaginärteil und dem Betrag auch kein Problem, aber an dieser Stelle komm ich nicht wirklich klar.

Das Problem was ich habe ist halt das ^n... Weil es ist ja ein Unterschied, ob ich [mm] i^1 [/mm] oder [mm] i^2 [/mm] habe etc.

Ich habe zunächst einmal überlegt, dass man den Binomischen Lehrsatz anwenden könnte, sprich
[mm] (1+i)^n [/mm] = [mm] \summe_{k=1}^{n} \vektor{n \\ k} 1^{n-k} i^{k} [/mm]
Dabei ist [mm] 1^{n-k} [/mm] ja nun immer 1, also hat man
[mm] \summe_{k=1}^{n} \vektor{n \\ k} i^{k} [/mm]

Aber nun bin ich ratlos, wie ich fortfahren könnte... Kann mir jemand weiterhelfen?

LG Pia

        
Bezug
Real, Imaginärteil und Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Sa 19.11.2011
Autor: MathePower

Hallo Pia90,

> Hallo!
>  
> Ich brauche nochmal eure Hilfe und zwar geht es um komplexe
> Zahlen.
>  
> Ich soll für die komplexe Zahl [mm](1+i)^n[/mm] mit n [mm]\in \IN[/mm] Real
> und Imaginärteil und den Betrag angeben.
>  
> Eigentlich hab ich mit dem Bestimmen von Real und
> Imaginärteil und dem Betrag auch kein Problem, aber an
> dieser Stelle komm ich nicht wirklich klar.
>
> Das Problem was ich habe ist halt das ^n... Weil es ist ja
> ein Unterschied, ob ich [mm]i^1[/mm] oder [mm]i^2[/mm] habe etc.
>
> Ich habe zunächst einmal überlegt, dass man den
> Binomischen Lehrsatz anwenden könnte, sprich
>  [mm](1+i)^n[/mm] = [mm]\summe_{k=1}^{n} \vektor{n \\ k} 1^{n-k} i^{k}[/mm]
>  
> Dabei ist [mm]1^{n-k}[/mm] ja nun immer 1, also hat man
> [mm]\summe_{k=1}^{n} \vektor{n \\ k} i^{k}[/mm]
>  
> Aber nun bin ich ratlos, wie ich fortfahren könnte... Kann
> mir jemand weiterhelfen?
>  


Stelle die komplexe Zahl [mm]1+i[/mm] in []Exponentialform dar.


> LG Pia


Gruss
MathePower

Bezug
                
Bezug
Real, Imaginärteil und Betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 Sa 19.11.2011
Autor: Pia90

Hallo MathePower,

erstmal vielen Dank für den Tipp!

Allerdings haben wir die Exponentialform im Rahmen der Vorlesung nicht kennengelernt und ich bin daher unsicher inwieweit ich damit arbeiten darf...

Gibt es evtl. noch einen anderen Weg?

LG Pia

Bezug
                        
Bezug
Real, Imaginärteil und Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Sa 19.11.2011
Autor: MathePower

Hallo Pia90,

> Hallo MathePower,
>  
> erstmal vielen Dank für den Tipp!
>  
> Allerdings haben wir die Exponentialform im Rahmen der
> Vorlesung nicht kennengelernt und ich bin daher unsicher
> inwieweit ich damit arbeiten darf...
>  
> Gibt es evtl. noch einen anderen Weg?
>  


Betrache die rekursiv definierte Folge

[mm]s_{n +1}=s_{n}*\left(1+i\right), \ s_{0}:=1[/mm]

Dann ist

[mm]\vmat{s_{n+1}}=\vmat{s_{n}*\left(1+i\right)}=\vmat{s_{n}}*\vmat{1+i}[/mm]


> LG Pia


Gruss
MathePower

Bezug
                                
Bezug
Real, Imaginärteil und Betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:34 Sa 19.11.2011
Autor: Pia90

Sorry, aber irgendwie komm ich mit der Aufgabe immer noch nicht klar...

Wie die Folge definiert wurde, das kann ich nachvollziehen, aber ich kann damit noch nicht wirklich was für den gesuchten Real- und Imaginärteil und den Betrag anfangen...

Im ersten Moment dachte ich, dass ich [mm] s_{n+1} [/mm] = [mm] s_n*(1+i) [/mm] ja auch schreiben kann als [mm] s_n [/mm] + [mm] s_n [/mm] * i ... Auf den ersten Blick sieht es jetzt für mich so aus, als könnte ich sowohl Real- als auch Imaginärteil bestimmen, aber das ist nicht richtig, oder?
Weil [mm] s_n [/mm] auch imaginär ist, oder?

Bezug
                                        
Bezug
Real, Imaginärteil und Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 23:36 Sa 19.11.2011
Autor: reverend

Hallo Pia,

wenn Ihr die Exponentialform noch nicht hattet, dann wohl auch nicht die Polarform - die beiden sind ja ganz eng verwandt.

Dann musst Du also bei der kartesischen Form bleiben, und das wird im Normalfall mühsam. Aber glücklicherweise...

> Sorry, aber irgendwie komm ich mit der Aufgabe immer noch
> nicht klar...
>  
> Wie die Folge definiert wurde, das kann ich nachvollziehen,
> aber ich kann damit noch nicht wirklich was für den
> gesuchten Real- und Imaginärteil und den Betrag
> anfangen...

Na, mit der Betragsgleichung von MathePower kannst Du aber schonmal ganz leicht ermitteln, dass [mm] |s_n|=(\wurzel{2})^n [/mm] ist!

> Im ersten Moment dachte ich, dass ich [mm]s_{n+1}[/mm] = [mm]s_n*(1+i)[/mm]
> ja auch schreiben kann als [mm]s_n[/mm] + [mm]s_n[/mm] * i ... Auf den ersten
> Blick sieht es jetzt für mich so aus, als könnte ich
> sowohl Real- als auch Imaginärteil bestimmen, aber das ist
> nicht richtig, oder?
>  Weil [mm]s_n[/mm] auch imaginär ist, oder?

Ja, das ist das Problem.

Aber da wir nun schon einmal den Betrag wissen, können wir den ja mal rausrechnen, um zu sehen, wie die Folge sonst so funktioniert.
Also "normieren" wir mal die zu potenzierende Zahl (1+i), indem wir sie durch ihren Betrag [mm] |1+i|=\wurzel{2} [/mm] teilen:

[mm] z=\bruch{1}{2}\wurzel{2}(1+i) [/mm]

Deine Folge wäre, wie gesagt, normalerweise nur mühsam zu bestimmen. Hier aber kann ich Dir nur empfehlen, mal die nächsten sieben Potenzen auszurechnen, also [mm] z^2, z^3, z^4, z^5, z^6, z^7, z^8. [/mm]

Das ist ein ernstgemeinter Tipp, auch wenn er sich vielleicht nicht so liest. Und er ist viel schneller zu befolgen, als man denkt. ;-)

Grüße
reverend


Bezug
                                                
Bezug
Real, Imaginärteil und Betrag: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Di 22.11.2011
Autor: Pia90

Ich habe mir die nächsten 7 Potenzen ausgerechnet und mir nun folgendes überlegt:

Das n kann ich im Grunde doch schreiben als n=4q+r. Damit hätte man
[mm] (1+i)^{4q+r}=(1+i)^{4q}*(1+i)^r [/mm] = [mm] ((1+i)^4)^q*(1+i)^r [/mm] = [mm] (-4)^q*(1+i)^r [/mm]

Jetzt könnte ich doch 4 Fälle für [mm] (1+i)^n [/mm] unterscheiden:
[mm] (-4)^q [/mm]
[mm] (-4)^q+(-4)^q*i [/mm]
[mm] 2(-4)^q*i [/mm]
[mm] 2(-4)^q [/mm] i - [mm] 2(-4)^q [/mm]

Und da kann ich doch jetzt die Real- und Imaginärteile ablesen... Oder hab ich einen Denkfehler?

Allerdings weiß ich noch nicht so wirklich, wie ich meine Überlegungen gescheit aufschreiben bzw. formulieren kann...



Bezug
                                                        
Bezug
Real, Imaginärteil und Betrag: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Di 22.11.2011
Autor: donquijote


> Ich habe mir die nächsten 7 Potenzen ausgerechnet und mir
> nun folgendes überlegt:
>  
> Das n kann ich im Grunde doch schreiben als n=4q+r. Damit
> hätte man
>  [mm](1+i)^{4q+r}=(1+i)^{4q}*(1+i)^r[/mm] = [mm]((1+i)^4)^q*(1+i)^r[/mm] =
> [mm](-4)^q*(1+i)^r[/mm]

ja

>  
> Jetzt könnte ich doch 4 Fälle für [mm](1+i)^n[/mm]
> unterscheiden:
>  [mm](-4)^q[/mm]
>  [mm](-4)^q+(-4)^q*i[/mm]
>  [mm]2(-4)^q*i[/mm]
>  [mm]2(-4)^q[/mm] i - [mm]2(-4)^q[/mm]
>  
> Und da kann ich doch jetzt die Real- und Imaginärteile
> ablesen... Oder hab ich einen Denkfehler?

nein, alles ist richtig

>  
> Allerdings weiß ich noch nicht so wirklich, wie ich meine
> Überlegungen gescheit aufschreiben bzw. formulieren
> kann...
>  
>  

Du schreibst alles so auf, wie du es oben getan hast:
[mm] Re(1+i)^n=(-1)^q*4^q [/mm]  und [mm] Im(1+i)^n=0, [/mm] falls n=4q,
...., falls n=4q+1
...., falls n=4q+2
...., falls n=4q+3



Bezug
                                                                
Bezug
Real, Imaginärteil und Betrag: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:11 Di 22.11.2011
Autor: Pia90

Vielen, vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]