matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenReal- und Imaginärteil
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - Real- und Imaginärteil
Real- und Imaginärteil < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Real- und Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:10 Do 16.10.2008
Autor: SirSmoke

Aufgabe
a)
Man berechne Real- und Imaginärteil sowie Betrag von [mm] z=\bruch{\wurzel{3}+i}{\wurzel{3}-i}; [/mm]

b)
man berechne z^24 in Normalform, d.h. man gebe den Realteil und den Imaginärteil dieser komplexen Zahl an.

Hallo zusammen!
Bei der a) muss ich den Bruch doch mit Hilfe der 3. bin. Formel erweitern, bis er wegfällt oder? Irgendwie kommt bei mir da nichts brauchbares heraus ... :/ denn ich bekomm den Nenner einfach nicht weg ...

[mm] z=\bruch{\wurzel{3}+i}{\wurzel{3}-i} [/mm] = [mm] \bruch{(\wurzel{3}+i)^2}{(\wurzel{3}-i)*(\wurzel{3}+i)} [/mm] = [mm] \bruch{(\wurzel{3}+i)^2}{3-\wurzel{3}i+\wurzel{3}i-i^2} [/mm] = [mm] \bruch{3+2\wurzel{3}i+i^2}{3-i^2} [/mm]  ich seh hier nur irgendwie kein weiterkommen ...

Die b) habe ich mir dementsprechend noch nich sinngemäß anschauen können ... aber muss ich hier wirklich z^24 ausrechnen? Kann ich nich z.B. auch [mm] z^6 [/mm] oder [mm] z^8 [/mm] ausrechnen und dann daraus auf z^24 schließen?

        
Bezug
Real- und Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 11:18 Do 16.10.2008
Autor: abakus


> a)
>  Man berechne Real- und Imaginärteil sowie Betrag von
> [mm]z=\bruch{\wurzel{3}+i}{\wurzel{3}-i};[/mm]
>  
> b)
>  man berechne z^24 in Normalform, d.h. man gebe den
> Realteil und den Imaginärteil dieser komplexen Zahl an.
>  Hallo zusammen!
>  Bei der a) muss ich den Bruch doch mit Hilfe der 3. bin.
> Formel erweitern, bis er wegfällt oder? Irgendwie kommt bei
> mir da nichts brauchbares heraus ... :/ denn ich bekomm den
> Nenner einfach nicht weg ...
>
> [mm]z=\bruch{\wurzel{3}+i}{\wurzel{3}-i}[/mm] =
> [mm]\bruch{(\wurzel{3}+i)^2}{(\wurzel{3}-i)*(\wurzel{3}+i)}[/mm] =
> [mm]\bruch{(\wurzel{3}+i)^2}{3-\wurzel{3}i+\wurzel{3}i-i^2}[/mm] =
> [mm]\bruch{3+2\wurzel{3}i+i^2}{3-i^2}[/mm]  ich seh hier nur
> irgendwie kein weiterkommen ...

Hallo,
es gilt [mm] i^2=-1, [/mm] also lautet dein Nenner 3-(-1), also 4.
Gruß Abakus

>  
> Die b) habe ich mir dementsprechend noch nich sinngemäß
> anschauen können ... aber muss ich hier wirklich z^24
> ausrechnen? Kann ich nich z.B. auch [mm]z^6[/mm] oder [mm]z^8[/mm] ausrechnen
> und dann daraus auf z^24 schließen?  


Bezug
                
Bezug
Real- und Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:28 Do 16.10.2008
Autor: SirSmoke

also kommt somit dann raus:

[mm] \bruch{1}{2}+\bruch{1}{2}\wurzel{3}i [/mm]

Somit wäre der Realteil: [mm] \bruch{1}{2} [/mm]
und der Imaginärteil: [mm] \bruch{1}{2}\wurzel{3}i [/mm]

Bezug
                        
Bezug
Real- und Imaginärteil: stimmt fast
Status: (Antwort) fertig Status 
Datum: 11:34 Do 16.10.2008
Autor: Roadrunner

Hallo SirSmoke!


Der Imaginärteil einer komplexen Zahl ist der Koeffizient vor dem $i_$ ... wird also ohne $i_$ angegeben.

Die Zahlenwerte stimmen dann.


Gruß vom
Roadrunner


Bezug
                                
Bezug
Real- und Imaginärteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:35 Do 16.10.2008
Autor: SirSmoke

danke ;)

Bezug
        
Bezug
Real- und Imaginärteil: Moivre-Formel
Status: (Antwort) fertig Status 
Datum: 11:36 Do 16.10.2008
Autor: Roadrunner

Hallo SirSmoke!


Für den Aufgabenteil b.) solltest Du die MBMoivre-Formel verwenden.


Gruß vom
Roadrunner


Bezug
                
Bezug
Real- und Imaginärteil: de Moivre
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 12:19 Do 16.10.2008
Autor: Kain2104


>  
>
> Für den Aufgabenteil b.) solltest Du die MBMoivre-Formel
> verwenden.
>  
>
> Gruß vom
>  Roadrunner
>  

Die de Moivre Formel kann hier nicht angewandt werden, da in der Aufgabenstellung explizit steht, dass man die Normalform benutzen soll.

Wenn du zunaechst [mm] z^2,z^3,z^4,...,z^6 [/mm] ausrechnest, dann siehst du eine gesetzmaessigkeit (am besten nimmst du statt den werten aus aufgabe a lieber die variablen a und b)

tipp: pascal'sches dreieck.> Hallo SirSmoke!


Bezug
                        
Bezug
Real- und Imaginärteil: warum nicht?
Status: (Korrektur) oberflächlich richtig Status 
Datum: 14:16 Do 16.10.2008
Autor: Roadrunner

Hallo Kain!


Es steht lediglich da, dass das Ergebnis in der Normalform dargestellt werden soll. Da kann als Zwischenschritt durchaus die Exponential- oder trigonometrische Form gewählt werden.

Jeder andere Weg als Moivre ist doch Beschäftigungstherapie ...


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]