matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraRe & Im aus komplexe Zahlen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Re & Im aus komplexe Zahlen
Re & Im aus komplexe Zahlen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Re & Im aus komplexe Zahlen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:34 So 15.10.2006
Autor: Braunstein

Aufgabe
Sei z = a + ib [mm] \in \IC. [/mm] Berechnen Sie [mm] Re(\bruch{z (konjugiert)}{2z}) [/mm] und [mm] Im(\bruch{i}{z^{2}}). [/mm]  

Hallo,

Ich hab ein paar Probleme mit dieser Rechnung. Diese beziehen sich auf das Herausfiltern des Imaginärteils. Für den Realteil hab ich

Re(z) = [mm] \bruch{a^{2}-b^{2}}{2(a^{2}+b^{2})} [/mm]

errechnen können. Aber ich weiß nicht, wie ich das beim Imaginärteil machen soll. Anfangs hab ich mir gedacht, ich löse [mm] (a+ib)^{2} [/mm] auf (Binomische Formel) und multipliziere sowohl Nenner als auch Zähler mit den konjugierten Wert. Aber auf den bin ich dann nicht gekommen. Dann hab ich mir gedacht, ich multipliziere Nenner und Zähler mit [mm] (a-ib)^{2}, [/mm] wobei dieser Weg - so glaube ich - auch falsch ist. Die Hochzahl stört mich nämlich.

Das Ergebnis war verwirrend und alles andere als eindeutig.

Ich würde mich sehr über eine Antwort freuen.

Gruß, hannes


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Re & Im aus komplexe Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:12 So 15.10.2006
Autor: leonhard

Ich weiss nicht was du mit "Herausfiltern" des Imaginärteils meinst. Um zum Beispiel [mm]Re(\bruch{\bar{z}}{2z})[/mm] zu berechnen, würde ich erst
[mm] $\bruch{\bar{z}}{2z}$ [/mm] berechnen, dann kannst Du Re (und auch Im) einfach ablesen.
[mm] $\bruch{\bar{z}}{2z} =\bruch{\bar{z}^2}{2z\bar{z}} =\bruch{(a-ib)^2}{2(a+ib)(a-ib)} =\bruch{a^2-b^2-2iab}{2(a^2+b^2)} =\bruch{a^2-b^2}{2(a^2+b^2)}+i \bruch{-2ab}{{2(a^2+b^2)}}$ [/mm]
Damit ist dann
[mm] $Re\left(\bruch{\bar{z}}{2z}\right)=\bruch{a^2-b^2}{2(a^2+b^2)}$ [/mm] und [mm] $Im\left(\bruch{\bar{z}}{2z}\right)=\bruch{-2ab}{{2(a^2+b^2)}}$ [/mm]

Um den zweiten Teil der Aufgabe zu lösen formst Du [mm] $\bruch{i}{z^2}$ [/mm] um bis du wieder etwas von der Form $A+iB$ hast [mm] ($A,B\in \IR$). [/mm] $B$ ist dann der gesuchte Imaginärteil.

Beginne mit damit, den Bruch mit [mm] $\bar{z}^2$ [/mm] zu erweitern. Im Nenner steht dann [mm] $z\bar{z}\cdot z\bar{z}$ [/mm]
leonhard




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]