matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenRaumkurve
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Raumkurve
Raumkurve < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Raumkurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 So 11.03.2007
Autor: Nofi

Aufgabe
Zeigen sie, dass die Raumkurve
[mm] \vec x(t) = \begin{pmatrix} cosh(t) \\ sinh(t) \\ e^t \end{pmatrix}[/mm]  in einer Ebene liegt. Geben sie diese Ebene an.

Schönen Sonntag Nachmittag allerseits

Sitze nun vor dieser Aufgabe und meine Überlegungen dazu sind, dies villeicht über die Schmiegeebene und weitere zu zeigen , nur weiss ich nicht wirklich wie und wie ansetzen

Wäre euch dankbar für eine kleine Hilfestellung


MfG

Nofi

        
Bezug
Raumkurve: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 So 11.03.2007
Autor: riwe

t=lnz
[mm]cosht=\frac{e^{t}+e^{-t}}{2}[/mm]
und analog für sinht
addieren,
und wenn ich mich nicht vertan habe: [mm]E:x+y-z=0[/mm]

Bezug
                
Bezug
Raumkurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:07 So 11.03.2007
Autor: Nofi

Und die gesuchte Ebene über das Kreuzprodukt vom Tangentenvektor und  Hauptnormalenvektor rausfinden? oder is das falsch?

Bezug
                        
Bezug
Raumkurve: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Mo 12.03.2007
Autor: leduart

Hallo
> Und die gesuchte Ebene über das Kreuzprodukt vom
> Tangentenvektor und  Hauptnormalenvektor rausfinden? oder
> is das falsch?

Wieso willst du das? riwe hat doch schon die Ebene aufgeschr. fuer jeden Punkt der Kurve gilt doch x1(t)+x2(t)=x3(t)
oder x+y=z
Das kreuzprodukt gibt enn doch nen Vektor senkrecht zur Ebene?
Gruss leduart

Bezug
                                
Bezug
Raumkurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:10 Mo 12.03.2007
Autor: Nofi

Najo wenn die Ebene x+y-z=0 sein soll kriege ich aber mit

[mm] \vec x(t) = \begin{pmatrix} cosh(t) \\ sinh(t) \\ e^t \end{pmatrix} [/mm]   also :

[mm]\cosh(t) +\sinh(t) - e^t=0 ==> e^t- e^t= 0 ==> 0=0 [/mm]

Wo ist dann meine ebenen gleichung?

Bezug
                                        
Bezug
Raumkurve: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 Mo 12.03.2007
Autor: Leopold_Gast

Die Tatsache, daß du beim Einsetzen von [mm]x = \cosh{t}, \, y = \sinh{t}, \, z = \operatorname{e}^t[/mm] in [mm]x+y-z=0[/mm] die wahre Aussage [mm]0=0[/mm] bekommst, beweist doch gerade, daß der vom Parameter [mm]t[/mm] abhängige Punkt in der Ebene liegt (Punktprobe). Herz, was wünschst du mehr!

Bezug
                                                
Bezug
Raumkurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 Mo 12.03.2007
Autor: Nofi

und dann ist

[mm] \sinh(t) + \cosh(t) -e^t = 0 [/mm]

wie leicht die mathematik doch sein kann

Bezug
        
Bezug
Raumkurve: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 So 11.03.2007
Autor: heyks

Hallo,

> Zeigen sie, dass die Raumkurve
> [mm]\vec x(t) = \begin{pmatrix} cosh(t) \\ sinh(t) \\ e^t \end{pmatrix}[/mm]
>  in einer Ebene liegt. Geben sie diese Ebene an.
>  

Substituiere [mm] x:=e^t [/mm] und verwende eine geeinete Darstellung für [mm] \cosh(t),sinh(t). [/mm]

Schönen Sonntag noch,

Heiko

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]