matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Rationale Potenzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis des R1" - Rationale Potenzen
Rationale Potenzen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rationale Potenzen: Beweis von Rechenregeln
Status: (Frage) beantwortet Status 
Datum: 15:17 Fr 20.10.2006
Autor: neuling_hier

Aufgabe
Es seien [mm] a,b\in\IR_+ [/mm] und [mm] r,s\in\IQ. [/mm]
Behauptung: [mm] a^r a^s [/mm] = [mm] a^{r+s}. [/mm]

Hallo liebes Forum,

Ich sitze vor dem angegebenen Analysis I-Skriptteil, der "zur eigenen Übung" überlassen wurde und komme nicht weiter. Meine bisherige, sehr bescheidene Beweisidee (eigentlich ist da noch gar nichts passiert, aber ich "haenge" total fest) sieht wie folgt aus:

Ich nehme mir zunaechst m,n und m',n' aus [mm] \IZ [/mm] her, und es seien

  r := [mm] \bruch{m}{n} [/mm] und s := [mm] \bruch{m'}{n'}. [/mm]

Dann gilt:

     [mm] a^r \cdot a^s [/mm]

  = [mm] a^\bruch{m}{n} \cdot a^\bruch{m'}{n'} [/mm]

  = [mm] sup\{ x\in\IR | x^n \leq a^m \} \cdot sup\{ x\in\IR | x^{n'} \leq a^m' \} [/mm]

  = [mm] [\ldots [/mm] ? [mm] \ldots] [/mm]

  = [mm] sup\{ x\in\IR | x^{nn'} \leq a^{mn'+m'n} \} [/mm]

  = [mm] a^\bruch{mn'+m'n}{nn'} [/mm]

  = [mm] a^{r+s} [/mm]

Naja, und der ausgelassene Teil fehlt mir. Wie bekommt man diesen Uebergang hin? Empfiehlt sich die Benutzung der [mm] \varepsilon-Bedingung [/mm] fuer das Supremum, oder sehe ich nur den Wald vor lauter Baeumen nicht?!

Fuer eine hilfreiche Antwort bzw. einen Loesungsansatz waere ich Euch super dankbar, da ich schon eine "ganze Weile" mit dieser Aufgabe verbracht habe :(

        
Bezug
Rationale Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Fr 20.10.2006
Autor: M.Rex

Hallo

Ich würde das Ganze über den direkten Weg zeigen.#

Also: Wir wissen

[mm] a^{r}*a^{s}=\underbrace{a*\ldots*a}_{r-mal}*\underbrace{a*\ldots *a}_{s-mal}=\underbrace{a*\ldots*a}_{(r+s)-mal}=a^{r+s} [/mm]

Marius

Bezug
                
Bezug
Rationale Potenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:16 Fr 20.10.2006
Autor: neuling_hier

Hallo Marius,

Erstmal Danke fuer Deine Antwort.

Wenn r und s natuerliche Zahlen waeren, wuerde ich das auch so machen (z.B. mit Induktion). Aber r und s sind rational, also zum Beispiel gilt auch:

  [mm] a^{\bruch{2}{3}} \cdot a^{\bruch{4}{3}} [/mm] = [mm] a^2 [/mm]

Wie zeige ich das allgemein fuer r, s [mm] \in\IQ [/mm] , dass [mm] a^r \cdot a^s [/mm] = [mm] a^{r+s} [/mm] ?

Bezug
                        
Bezug
Rationale Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 Fr 20.10.2006
Autor: M.Rex

Hallo

Sorry, das hatte ich nicht bedacht.

Dann musst du halt über den Umweg der Wurzel gehen.

Du weisst, dass [mm] a^{\bruch{m}{n}}=\wurzel[n]{a^{m}} [/mm]

Also

[mm] r=\bruch{m}{h}, s=\bruch{n}{h}, [/mm] ich nehme mal an, dass die Brüche schon auf den Hauptnenner h erweitert wurden, das macht das Rechnen leichter

Also

[mm] a^{r}*a^{s}=a^{\bruch{m}{h}}*a^{\bruch{n}{h}}=\wurzel[h]{a^{m}*a^{n}} [/mm]
Da [mm] m,n\in\IN =\wurzel[h]{a^{m+n}}=a^{\bruch{m+n}{h}}=a^{\bruch{m}{h}+\bruch{n}{h}}=a^{r+s} [/mm]

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]