matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenRationale Normalform / Basis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Rationale Normalform / Basis
Rationale Normalform / Basis < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rationale Normalform / Basis: Tipp
Status: (Frage) überfällig Status 
Datum: 10:44 Do 05.07.2012
Autor: chesn

Aufgabe
Es sei $ K $ ein Körper und es sei [mm] K^5 [/mm] mit der Standardbasis B versehen. Es sei [mm] F\in End_K(K^5) [/mm] gegeben durch

[mm] M^B_B(B)=\pmat{ -1 & 0 & 0 & 0 & -3 \\ -1 & -2 & -1 & 1 & -3 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & -1 & 0 & -1 \\ 1 & 0 & 0 & 0 & 1} [/mm]

a) Bestimmen Sie [mm] \chi_F(X). [/mm]

b) Bestimmen Sie für die beiden Fälle [mm] K=\IR [/mm] und [mm] K=\IC [/mm] jeweils eine Basis des [mm] K^5 [/mm] bezüglich der die entsprechende Matrix zu F Rationale Normalform hat und geben Sie diese Normalform an.

Hallo! Habe Schwierigkeiten mit dem Teil b) und bräuchte ein wenig Hilfe. :)

In a) ist wohl das char. Polynom der Darstellungsmatrix gesucht. Habe dreimal den Laplaceschen Entwicklungssatz benutzt und komme auf:

[mm] \chi_F(X)=-x^5-3x^4-5x^3-7x^2-6x-2=(x-1)^3(x^2+2)=(x-1)^3(x+\wurzel{2}i)(x-\wurzel{2}i)) [/mm]

Habe das überprüft, sollte richtig sein. Durch Polynomdivision erhalte ich die Faktorisierung rechts.

=> b) Ich weiss, dass die Rationale Normalform aus den "Blöcken" besteht, die gerade die Begleitmatrizen der Faktoren des char. Polynoms sind: [mm] (x-1)^3=x^3+3x^2+3x+1 [/mm]

$ => [mm] B_{(x-1)^3}=\pmat{0&0&-1\\1&0&-3 \\ 0&1&-3}, [/mm] \ \ \ \ [mm] B_{x^2+2}=\pmat{ 0&-2\\ 1&0} [/mm] $

Ist meine gesuchte Rationale Normalform dann [mm] A:=\pmat{0&0&-1&0&0\\1&0&-3&0&0 \\ 0&1&-3&0&0 \\ 0&0&0&0&-2 \\ 0&0&0&1&0} [/mm] ?

Jetzt habe ich schon einiges gelesen aber komme einfach nicht weiter.. wie berechne ich jetzt die gesuchte Basis? Kann das jemand möglichst in "Laiensprache" erklären bzw. ein gutes Beispiel bringen, da ich aus allem was ich bis jetzt dazu gelesen habe nicht schlauer geworden bin.

Wäre super!! Vielen Dank und lieben Gruß,
chesn

        
Bezug
Rationale Normalform / Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:33 Fr 06.07.2012
Autor: chesn

Kann noch jemand was dazu sagen?

Dankeschön!
chesn

Bezug
        
Bezug
Rationale Normalform / Basis: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:31 Sa 07.07.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]