matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenRationale Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Reihen" - Rationale Folge
Rationale Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rationale Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:48 Mi 07.05.2014
Autor: bquadrat

Aufgabe
Zu zeigen ist: Zu jeder reellen Zahl r gibt es eine Folge [mm] (R_{n})\in\IQ [/mm] (für alle n), die gegen die reelle Zahl r konvergiert.

Mir fällt leider überhaupt kein Ansatz für diese Aufgabe ein. Könnte mir evtl. mal bitte jemand auf die Sprünge helfen?

Dank im Voraus

[mm] b^{2} [/mm]

        
Bezug
Rationale Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:17 Mi 07.05.2014
Autor: chrisno

Nimm die Darstellung von r z.B. als Dezimalzahl.

Bezug
                
Bezug
Rationale Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:25 Mi 07.05.2014
Autor: bquadrat

Wie könnte ich das denn machen? Ich könnte r als Bruch darstellen aber als Dezimalzahl?

Bezug
                        
Bezug
Rationale Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:41 Mi 07.05.2014
Autor: leduart

Hallo
a) eine Dezimalzahl ist ein Bruch mit Zehnerpotenzen im Nenner,
reelle Zahlen die nicht  rational sind  kannst du nicht als Bruch darstellen, aber als nicht abbrechende , nicht periodische dezimal zahl so ist etwa [mm] \pi=3+1/10+4/100+1/1000 [/mm]
eine Folge die auf [mm] \pi [/mm] zuläuft ist also 3, 31/10, 314/100,, ....
allerdings solltest du nachsehen, wie  oder wodurch ihr reelle Zahlen beschrieben habt, darin sollte eigentlich schon der eigentliche Beweis liegen.
für eine reelle Zahl die rational ist nimmt man einfach die konstante Folge .
Gruss leduart

Bezug
        
Bezug
Rationale Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 06:19 Do 08.05.2014
Autor: fred97

Ihr hattet sicher:

Sind x,y [mm] \in \IR [/mm] und gilt x<y, so gibt es ein r [mm] \in \IQ [/mm] mit x<r<y.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]