matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenRang von inversen Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Rang von inversen Matrizen
Rang von inversen Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang von inversen Matrizen: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 21:31 So 03.11.2013
Autor: dodo1924

Aufgabe 1
Seien A und B (nxn) Matrizen mit AB = In. Zeige, dass der Rang von A dann gleich n ist!

Aufgabe 2
Sei B eine (nxn) Matrix mit Rang n. Dann gibt es eine (nxn) Matrix C mit BC = In! Beweis!

Aufgabe 3
Seien A und B (nxn) Matrizen mit AB = In. Dann ist B invertierbar und es gibt A = B-1. Verwende die beiden vorherigen Aufgaben zum Beweis.

Hi!

Für Aufgabe 1 wäre mein Ansatz, dass [mm] A*\vec{x}=\vec{b} [/mm] eindeutig sein muss, da ja die Inverse einer Matrix eindeutig ist.
Daraus folgt, dass die Spalten l.ua. sein müssen, und daraus folgt wieder, dass jede Spalte von A eine Pivotposition besitzen muss. Also ist rg(A)=n!
Stimmt das? Falls ja, vielleicht könntet ihr mir den weg dorthin ein wenig verständnissvoller beschreiben.

Für Aufgabe 2 hätte ich einen ähnlichen Weg, nur eben umgekehrt, also, dass aus rg(B)=n folgt, dass [mm] A*\vec{x}=\vec{b} [/mm] für jeden [mm] \vec{b} [/mm] höchstens eine Lösung besitzt. Also ist [mm] A*\vec{x}=\vec{b} [/mm] eindeutig, was mich dazu bringt, dass eine inverse zu B existiert.
Bin mir jedoch wieder unsicher, und würde euch bitten, den Weg dorthin verständnissvoll zu beschreiben. :)

Aufgabe 3 klingt für mich einfach, da wenn A*B = In ist ja B = A-1, bzw A = B-1 ist.
Aber wie sollte ich diese Aufgabe mithilfe der beiden vorherigen beweisen??

Bin dankbar für jede Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Rang von inversen Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:18 Mo 04.11.2013
Autor: hippias


> Seien A und B (nxn) Matrizen mit AB = In. Zeige, dass der
> Rang von A dann gleich n ist!
>  Sei B eine (nxn) Matrix mit Rang n. Dann gibt es eine
> (nxn) Matrix C mit BC = In! Beweis!
>  Seien A und B (nxn) Matrizen mit AB = In. Dann ist B
> invertierbar und es gibt A = B-1. Verwende die beiden
> vorherigen Aufgaben zum Beweis.
>  Hi!

Die Beweise waeren leichter zu beurteilen, wenn ich wuesste, welche Saetze aus der Vorlesung bekannt sind. Habt ihr bewiesen, dass eine quadratische Matrix mit vollem Rang invertierbar ist? Weisst Du, dass Zeilenrang= Spaltenrang ist?

>  
> Für Aufgabe 1 wäre mein Ansatz, dass [mm]A*\vec{x}=\vec{b}[/mm]
> eindeutig sein muss, da ja die Inverse einer Matrix
> eindeutig ist.

Was meinst Du mit eindeutig? Woher kommt ploetzlich eine Inverse?

>  Daraus folgt, dass die Spalten l.ua. sein müssen, und
> daraus folgt wieder, dass jede Spalte von A eine
> Pivotposition besitzen muss. Also ist rg(A)=n!

Wo benutzt Du eigentlich die Voraussetzung?

>  Stimmt das? Falls ja, vielleicht könntet ihr mir den weg
> dorthin ein wenig verständnissvoller beschreiben.
>  
> Für Aufgabe 2 hätte ich einen ähnlichen Weg, nur eben
> umgekehrt, also, dass aus rg(B)=n folgt, dass
> [mm]A*\vec{x}=\vec{b}[/mm] für jeden [mm]\vec{b}[/mm] höchstens eine
> Lösung besitzt. Also ist [mm]A*\vec{x}=\vec{b}[/mm] eindeutig, was

Hoechstens eine Loesung heisst aber grundsaetzlich nicht, dass fuer jede rechte Seite eine Loesung existiert. Oder doch?

> mich dazu bringt, dass eine inverse zu B existiert.

Siehe oben: Welchen Saetz benutzt Du hier?

>  Bin mir jedoch wieder unsicher, und würde euch bitten,
> den Weg dorthin verständnissvoll zu beschreiben. :)
>  
> Aufgabe 3 klingt für mich einfach, da wenn A*B = In ist ja
> B = A-1, bzw A = B-1 ist.

Damit $B= [mm] A^{-1}$ [/mm] ist, muss $AB= BA= [mm] I_{n}$ [/mm] gelten. Welche Saetze kennst Du, die die Invertierbarkeit einer Matrix garantieren?

>  Aber wie sollte ich diese Aufgabe mithilfe der beiden
> vorherigen beweisen??
>  
> Bin dankbar für jede Hilfe!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Rang von inversen Matrizen: Ergänzung
Status: (Frage) überfällig Status 
Datum: 11:11 Mo 04.11.2013
Autor: dodo1924

Wir sollten aufgrund folgenden Satzes beweisen:
Satz: sei A(mxn) Matrix, dann sind folgende Aussagen gleichwertig
(i) die LH der Spalten von A ist der [mm] \IRm [/mm]
(ii) $ [mm] A\cdot{}\vec{x}=\vec{b} [/mm] $ besitzt für jedes [mm] \vec{b} \in \IRm [/mm] eine Lösung
(iii)rg(A)= m (Anzahl der Zeilen)
(iv) in der red. ZSF von A findet man keine Nullzeile
(v) in jeder Zeile von A findet man eine Pivotposition

Dass eine quadratische Matrix mit vollem Rang invertierbar ist, haben wir noch nicht bewiesen!

Die Inverse entnehme ich aus der Angabe (A*B=In  heißt ja, dass B die Inverse zu A ist)
Da A invertierbar ist, ist die Lösung von $ [mm] A\cdot{}\vec{x}=\vec{b} [/mm] $ ja
[mm] \vec{x} [/mm] =  A-1 * [mm] \vec{b}, [/mm] und diese Lösung muss ja eindeutig sein!

Für inverse Matrizen haben wir noch folgende Hinweise aufgeschrieben:
- sind alle Spalten von A l.ua., dann ist A invertierbar!
- inverse Matrizen sind immer eindeutig

Bezug
                        
Bezug
Rang von inversen Matrizen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Fr 08.11.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]