matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraRang;lineare Abb.; Unterraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Rang;lineare Abb.; Unterraum
Rang;lineare Abb.; Unterraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang;lineare Abb.; Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:59 Mi 11.04.2007
Autor: mathedepp_No.1

Aufgabe
Ja bzw. Nein - Fragen:

1.) Der Rang einer Matrix ist invariant unter Zeilen- und Spaltentransformationen.

2.) Sei [mm] f:V\to [/mm] W eine lineare Abb. zwischen den Vektorräumen V und W. f ist surjektiv genau dann, wenn dim(Ker f)=dimV-dimW.

3.) Der Unterraum, der von den Spaltenvektoren einer Matrix erzeugt wird, ist invariant unter Spaltentransformationen.

Hallo liebe Leute,

habe hier drei Multiple Choice fragen, die ich nur mit JA oder NEIN zu beantworten habe.

Wollte meine Überlegungen/Begründungen mal durch fachliche Kompetenz :-) überprüfen lassen:

Vorab: Habe invariant mit unveränderlich übersetzt. Stimmt das??


zu 1) NEIN,denn z.B. der Rang dieser Matrix [mm] A=\pmat{1 & 2 \\ 2 & 4} [/mm] hhat ja so den Rang 2 jedoch nach Zeilen-bzw.Spaltentransformationen [mm] A=\pmat{1 & 2 \\ 0 & 0} [/mm] nur noch Rang 1. Oder verstehe ich das hier falsch???

zu 2.) JA, denn ist f surjektiv so ist f(V)=W. Und gilt andersrum dim(Kerf)=dimV-dimW so sieht man, dass dies die Dimensionsformel für lineare Abbildungen ist wobei W=Im(f) [mm] \Rightarrow [/mm] f ist surjektiv.

zu 3.) JA, denn es gilt: die Spaltenvektoren einer Matrix spannen einen Unterraum auf (das Bild), d.h. also die Spaltenvektoren der Matrix bilden den Spann des Unterraumes. führt man nun bei der Matrix Spaltentransformationen durch, so fliegen höchstens nur die Spaltenvektoren raus, die sich als Linearkombination der anderen darstellen lassen,d.h. ich erhalte somit die maxmimale Anzahl von linear unabhängigen Vektoren die den Unterraum aufspannen, sprich eine Basis. der Unterraum bleibt jedoch der selbe!!

Wäre prima wenn ich das mal durchchecken könntet, und mir dann bescheid gebt!!

Viele Liebe Grüße, und Danke im Vorraus, der mathedepp_No.1

        
Bezug
Rang;lineare Abb.; Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Mi 11.04.2007
Autor: schachuzipus

Hallo,

> Ja bzw. Nein - Fragen:
>  
> 1.) Der Rang einer Matrix ist invariant unter Zeilen- und
> Spaltentransformationen.
>  
> 2.) Sei [mm]f:V\to[/mm] W eine lineare Abb. zwischen den
> Vektorräumen V und W. f ist surjektiv genau dann, wenn
> dim(Ker f)=dimV-dimW.
>  
> 3.) Der Unterraum, der von den Spaltenvektoren einer Matrix
> erzeugt wird, ist invariant unter Spaltentransformationen.
>  Hallo liebe Leute,
>
> habe hier drei Multiple Choice fragen, die ich nur mit JA
> oder NEIN zu beantworten habe.
>  
> Wollte meine Überlegungen/Begründungen mal durch fachliche
> Kompetenz :-) überprüfen lassen:
>  
> Vorab: Habe invariant mit unveränderlich übersetzt. Stimmt
> das??
>  
>
> zu 1) NEIN,denn z.B. der Rang dieser Matrix [mm]A=\pmat{1 & 2 \\ 2 & 4}[/mm]
> hhat ja so den Rang 2 jedoch nach
> Zeilen-bzw.Spaltentransformationen [mm]A=\pmat{1 & 2 \\ 0 & 0}[/mm]
> nur noch Rang 1. Oder verstehe ich das hier falsch??? [notok]

Der Rang ist doch die Anzahl der Nicht-Nullzeilen der Matrix in [mm] \bold{Zeilenstufenform} [/mm] oder der Nicht-Nullspalten in [mm] \bold{Spaltenstufenform}, [/mm] also ist der Rang sowohl unter Zeilen, als auch unter Spaltenumformungen invariant!!

>  
> zu 2.) JA, denn ist f surjektiv so ist f(V)=W. Und gilt
> andersrum dim(Kerf)=dimV-dimW so sieht man, dass dies die
> Dimensionsformel für lineare Abbildungen ist wobei W=Im(f)
> [mm]\Rightarrow[/mm] f ist surjektiv. [daumenhoch]
>  
> zu 3.) JA, denn es gilt: die Spaltenvektoren einer Matrix
> spannen einen Unterraum auf (das Bild), d.h. also die
> Spaltenvektoren der Matrix bilden den Spann des
> Unterraumes. führt man nun bei der Matrix
> Spaltentransformationen durch, so fliegen höchstens nur die
> Spaltenvektoren raus, die sich als Linearkombination der
> anderen darstellen lassen,d.h. ich erhalte somit die
> maxmimale Anzahl von linear unabhängigen Vektoren die den
> Unterraum aufspannen, sprich eine Basis. der Unterraum
> bleibt jedoch der selbe!! [daumenhoch]

Die Spaltenumformungen bewirken höchstens eine Umordnung der Basis des Spaltenraumes, aber der bleibt derselbe.
Aber Achtung:Bei Zeilenumformungen ist das i.A. nicht so (bzgl. des Spaltenraumes)

>  
> Wäre prima wenn ich das mal durchchecken könntet, und mir
> dann bescheid gebt!!
>  
> Viele Liebe Grüße, und Danke im Vorraus, der mathedepp_No.1


Gruß zurück

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]