matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenRang einer Matrix zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Rang einer Matrix zeigen
Rang einer Matrix zeigen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang einer Matrix zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:45 Mo 14.06.2010
Autor: congo.hoango

Hallo,

wie kann ich zeigen, dass der Rang folgender Matrix 2 ist?

[mm] A=\pmat{ -sinxcosy & -cosxsiny \\ cosxcosy & -sinxsiny \\ 0 & cosy } [/mm]

Kann ich da noch irgendwas umformen, oder reicht das Argument, dass der Rang maximal der Anzahl der Spalten sein kann (also hier 2) und die letzte Zeile aufgrund der 0 lin. unabhängig von den ersten beiden Zeilen ist?

Danke schonmal für Antworten und beste Grüße

vom congo

        
Bezug
Rang einer Matrix zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Mo 14.06.2010
Autor: wnehli

Der Rang kann, wie du bereits festgestellt hattest höchstens der Anzahl der Zeilen bzw. Spalten entsprechen (die jeweils kleinere Anzahl ist ausschlaggebend).
Und dann sollte man eine Stufen Matrix umwandeln, dass heißt an der ersten Position (1. Zeile, 1. Spalte) eine Zahl ungleich 0 steht und die erste Zeile ansonsten aus Nullen besteht, dies erreichst du durch Zeilen- bzw. Spaltentausch, Addition bzw. Subraktion der einzelen Zeilen bzw. Spalten voneinander. (Das selbe Verfahren setzt man dann für die weiteren Zeilen und Spalten fort).
Dann kann man sehen, dass der Rang 2 ist.

Bezug
                
Bezug
Rang einer Matrix zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:42 Di 15.06.2010
Autor: congo.hoango

Danke für deine Antwort.

Wie man mit Matrizen rechnet, ist mir klar. Auch wie man bei einfachen Matrizen den Rang bestimmt, bzw. die Zeilenstufenform. Aber hier die trigonometrischen Terme auf die Zeilenstufenform zu bringen ist mir ein Rätsel...wie gesagt, es sei denn es genügt, dass man schon weiß dass der letzte Zeilenvektor l.ua. zu den ersten beiden ist.

Gruß
congo

Bezug
                        
Bezug
Rang einer Matrix zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Di 15.06.2010
Autor: qsxqsx

Hallo,

Du sollst quasi zeigen, dass die Beiden Spalten deiner Matrix linear unabhängig sind.

In deinen Spalten stehen Funktionen (!). Kann man z.B. sin(x) mit einer Zahl [mm] \lambda [/mm] multiplizieren sodass es für alle x gleich dem cos(x) ist.....?

Also sin(x) * [mm] \lambda [/mm] = cos(x) für alle x und eine feste Zahl [mm] \lambda. [/mm]


Ist ja wohl nicht möglich...

sin(x) und cos(x) sind also linear unabhängig.

Gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]