Rang einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:16 Mi 21.11.2007 | Autor: | damien23 |
Aufgabe | Bestimme den Rang der Matrix
[mm] \pmat{ 2 & 1 & 6 & 6 \\ 3 & 1 & 1 & -1 \\ 5 & 2 & 7 & 5 \\ -2 & 4 & 3 & 2 } [/mm] |
Also möchte nur mal wissen ob mein Ergebniss stimmt.
1. Schritt Zeilen- und Spaltentausch:
=>
[mm] \pmat{ 1 & 6 & 6 & 2 \\ 4 & 3 & 2 & -2 \\ 1 & 1 & -1 & 3 \\ 2 & 7 & 5 & 5}
[/mm]
2. Schritt die Vierte minus 2x die Erste:
=>
[mm] \pmat{ 1 & 6 & 6 & 2 \\ 4 & 3 & 2 & -2 \\ 1 & 1 & -1 & 3 \\ 0 & -5 & -7 & 1}
[/mm]
3. Schritt Dritte minus Erste:
=>
[mm] \pmat{ 1 & 6 & 6 & 2 \\ 4 & 3 & 2 & -2 \\ 0 & -5 & -7 & 1 \\ 0 & -5 & -7 & 1}
[/mm]
4. Schritt Zweite minus 4x Erste
=>
[mm] \pmat{ 1 & 6 & 6 & 2 \\ 0 & -21 & -22 & -10 \\ 0 & -5 & -7 & 1 \\ 0 & -5 & -7 & 1}
[/mm]
5. Schritt Vierte minus ((-1)x Dritte)
=>
[mm] \pmat{ 1 & 6 & 6 & 2 \\ 0 & -21 & -22 & -10 \\ 0 & -5 & -7 & 1 \\ 0 & 0 & 0 & 0}
[/mm]
6. Schritt Dritte minus [mm] ((-\bruch{5}{21})x [/mm] Zweite)
=>
[mm] \pmat{ 1 & 6 & 6 & 2 \\ 0 & -21 & -22 & -10 \\ 0 & 0 & -\bruch{37}{21} & -\bruch{29}{21} \\ 0 & 0 & 0 & 0}
[/mm]
=< Rang der Matrix ist =3
MfG
Damien
|
|
|
|
Ich hätte jetzt Rang II gesagt wegen der Nullzeile. Sie muss abgezogen werden.
Ich kenne diese "Formel":
Rang A = {m,n} - "Nullzeile"
Ich hoffe es stimmt, bin mir aber ncih sicher. Die Aufgabe musste ich letzens auch machen =)
|
|
|
|
|
Status: |
(Korrektur) kleiner Fehler | Datum: | 02:00 Do 22.11.2007 | Autor: | Martin243 |
Hallo,
aber er hat von den 4 Zeilen doch schon eine abgezogen. Deswegen ist der Rang 3.
Rang M = [mm] $\min(m,n) [/mm] - $"Anzahl Nullzeilen"
Gruß
Martin
|
|
|
|
|
Hallo,
wenn es nur um den Rang geht, dann stimmt das Ergebnis: Rang M = 3. Die Rechnung dürfte dann auch ok sein.
Aber warum vertauschst du am Anfang Zeilen und Spalten?
Gruß
Martin
|
|
|
|