matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraRang einer Matrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Rang einer Matrix
Rang einer Matrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang einer Matrix: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:49 Mo 05.12.2005
Autor: Franzie

Hallöchen!
Ich wollte mal wissen, ob ich die folgende Aufgabe richtig gelöst habe:
Bestimmen Sie den Rang der folgenden Matrizen über R, indem Sie die Matrizen auf Stufenform bringen!

[mm] \pmat{ 1 & 6 & 4\\ 2 & 4 & -1 \\ -1 & 2 & 5 } [/mm] (mit z2+2*z3 to z2)
[mm] \pmat{ 1 & 6 & 4\\ 0 & 10 & -1 \\ -1 & 2 & 5 } [/mm] und hier komme ich jetzt nicht weiter bezüglich der Stufenform. Ist der Rang hier vielleicht schon ablesbar (rg=2?)?

[mm] \pmat{ 1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 & -1 \\ 0 & 0 & 5 & 10 & 0 & 15 & 5 \\ 2 & 6 & 0 & 8 & 4 & 18 & 6 } [/mm]  mit (-z2+z4 to z4)
[mm] \pmat{ 1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 & -1 \\ 0 & 0 & 5 & 10 & 0 & 15 & 5 \\ 0 & 0 & 0 & 12 & 0 & 21 & 7 } [/mm]
mit (-z1+z2to z2)
[mm] \pmat{ 1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & -2 & 0 & -3 & -1 \\ 0 & 0 & 5 & 10 & 0 & 15 & 5 \\ 0 & 0 & 0 & 12 & 0 & 21 & 7 } [/mm]
mit ( z3 tauschen mit z4)
[mm] \pmat{ 1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & -2 & 0 & -3 & -1 \\ 0 & 0 & 0 & 12 & 0 & 21 & 7 \\ 0 & 0 & 5 & 10 & 0 & 15 & 5} [/mm]
mit (5*z2+z4to z4)
[mm] \pmat{ 1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 0 & 0 & -1 & -2 & 0 & -3 & -1 \\ 0 & 0 & 0 & 12 & 0 & 21 & 7\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 }, [/mm] also rg=3, oder?

danke schon mal
liebe Grüße




        
Bezug
Rang einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 10:41 Di 06.12.2005
Autor: MrPink

Hallo, wieso kommst du denn nicht weiter ? Addiere die Erste Zeile auf die Dritte und dann multipliziere die zweite mit dem passenden Faktor auf die Dritte. ..... Der Rang der Matrix sollte dann 2 ergeben. Meine sieht so aus :

[1,0,-11/4]
[0,1,,9/8]
[0,0,0]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]