matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenRang
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Abbildungen" - Rang
Rang < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rang: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:29 Sa 09.02.2008
Autor: NoWay

Aufgabe
Seien f,g : U [mm] \to [/mm] V zwei lin. Abb., wobei U endlich erzeugt ist
z.z. das Rang (f+g) [mm] \le [/mm] Rang (f) + Rang (g)

Ich kann das leider nur anhand eines Beispiels aber allgemein kann ich das leider nicht beweisen, kann mir villeicht jemand auf die Sprünge helfen, bzw. diese Aufgabe erklären!
Danke Im Voraus!!!

        
Bezug
Rang: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Sa 09.02.2008
Autor: Somebody


> Seien f,g : U [mm]\to[/mm] V zwei lin. Abb., wobei U endlich erzeugt
> ist
> z.z. das Rang (f+g) [mm]\le[/mm] Rang (f) + Rang (g)
>  Ich kann das leider nur anhand eines Beispiels aber
> allgemein kann ich das leider nicht beweisen, kann mir
> villeicht jemand auf die Sprünge helfen, bzw. diese Aufgabe
> erklären!

Also eines ist offensichtlich: dass [mm] $\mathrm{Kern}(f)\cap \mathrm{Kern}(g)\subseteq \mathrm{Kern}(f+g)$ [/mm] ist: einfach weil aus $f(x)=0$ und $g(x)=0$ folgt, dass $(f+g)(x)=0$.
Vielleicht kennst Du eine Beziehung zwischen Rang und Kern und kannst aus dieser Beziehung der Kerne die gewünschte Beziehung über die Ränge herleiten?


Bezug
                
Bezug
Rang: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Sa 09.02.2008
Autor: NoWay

Super, danke das ist schonmal ein guter tipp!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]