matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenRandwertproblem DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - Randwertproblem DGL
Randwertproblem DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Randwertproblem DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:14 So 20.12.2009
Autor: pandabaer

Aufgabe
Lösen Sie die Randwertaufgaben
(a) x''(t) = 1, x' (0) = 0, x' (1) = 2,
(b) x''(t) = 1, x' (0) = 0, x' (1) = 1.
(c) x''(t) − 2x' (t) = 0, x(0) = 1, x(1) = 0

Hallo,  
ich denke aufgabe b habe ich schon gelöst:

x'(t)= t >> x'(0)=0 >> x'(1)= 1
>>x(t)= [mm] \bruch{t^2}{2} [/mm]

aufgabe a) wäre ja eigentlich fast der selbe ansatz, aber bei x'(1) = 2 gehts nicht...ich komme nicht drauf..

aufgabe c) : wie soll ich hier ansetzen, auch einfach im kopf integrieren oder gibt es da eine bestimmte vogehensweise?

grüße

        
Bezug
Randwertproblem DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 So 20.12.2009
Autor: pandabaer

ich habe jetzt einfach mal hochintegriert und das so zusammengefasst:

aufgabe a)

x''(t)=1 >> x'(t) = t + C >> x'(0) = 0 + C mit C=0 und x'(1) = 1+ C mit C=1

>> ist nicht eindeutig lösbar

aufgabe c)

das charakteristische polynom gebildet: [mm] \lambda^2 -2\lambda [/mm] = 0
damit die eigenwerte: [mm] \lambda_1 [/mm] = 0 und [mm] \lambda_2 [/mm] = 2
damit die lösungen über exponentialansatz: [mm] x_1= [/mm] e^0t=1 und [mm] x_2= [/mm] e^2t
die allgemeine lösung ist dann: x(t)= A*1 + B* e^2t

für das RWP1 gilt dann:   x(0) = A + B = 1
für RWP2 somit: x(1) = A + [mm] B*e^2 [/mm] = 0

damit wäre die lösung: A= 1 + [mm] \bruch{1}{e^2 - 1 } [/mm]  B= - [mm] \bruch{1}{e^2 - 1 } [/mm]

damit: x(t)= 1 + [mm] \bruch{1}{e^2 - 1 } [/mm] - [mm] \bruch{1}{e^2 - 1 }*e^2t [/mm]

kann das so stimmen?

Bezug
                
Bezug
Randwertproblem DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 So 20.12.2009
Autor: MathePower

Hallo pandabaer,

> ich habe jetzt einfach mal hochintegriert und das so
> zusammengefasst:
>  
> aufgabe a)
>
> x''(t)=1 >> x'(t) = t + C >> x'(0) = 0 + C mit C=0 und
> x'(1) = 1+ C mit C=1
>  
> >> ist nicht eindeutig lösbar


Stimmt. [ok]


>  
> aufgabe c)
>  
> das charakteristische polynom gebildet: [mm]\lambda^2 -2\lambda[/mm]
> = 0
> damit die eigenwerte: [mm]\lambda_1[/mm] = 0 und [mm]\lambda_2[/mm] = 2
>  damit die lösungen über exponentialansatz: [mm]x_1=[/mm] e^0t=1
> und [mm]x_2=[/mm] e^2t
>  die allgemeine lösung ist dann: x(t)= A*1 + B* e^2t
>  
> für das RWP1 gilt dann:   x(0) = A + B = 1
> für RWP2 somit: x(1) = A + [mm]B*e^2[/mm] = 0
>  
> damit wäre die lösung: A= 1 + [mm]\bruch{1}{e^2 - 1 }[/mm]  B= -
> [mm]\bruch{1}{e^2 - 1 }[/mm]
>  
> damit: x(t)= 1 + [mm]\bruch{1}{e^2 - 1 }[/mm] - [mm]\bruch{1}{e^2 - 1 }*e^2t[/mm]
>  
> kann das so stimmen?


Ja,  Aufgabe c) stimmt auch. [ok]


Gruss
MathePower

Bezug
        
Bezug
Randwertproblem DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 So 20.12.2009
Autor: MathePower

Hallo pandabaer,


> Lösen Sie die Randwertaufgaben
>  (a) x''(t) = 1, x' (0) = 0, x' (1) = 2,
>  (b) x''(t) = 1, x' (0) = 0, x' (1) = 1.
>  (c) x''(t) − 2x' (t) = 0, x(0) = 1, x(1) = 0
>  Hallo,  
> ich denke aufgabe b habe ich schon gelöst:
>  
> x'(t)= t >> x'(0)=0 >> x'(1)= 1
>  >>x(t)= [mm]\bruch{t^2}{2}[/mm]


Stimmt. [ok]


>  
> aufgabe a) wäre ja eigentlich fast der selbe ansatz, aber
> bei x'(1) = 2 gehts nicht...ich komme nicht drauf..
>  
> aufgabe c) : wie soll ich hier ansetzen, auch einfach im
> kopf integrieren oder gibt es da eine bestimmte
> vogehensweise?


Diese Fragen hast Du Dir in diesem Artikel schon beantwortet.


>
> grüße


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]