matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenRandwertaufgabe: Hilfe!
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Randwertaufgabe: Hilfe!
Randwertaufgabe: Hilfe! < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Randwertaufgabe: Hilfe!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:16 So 17.12.2006
Autor: patb

Hallo,

ich habe hier eine ganz merkwürdige Aufgabe, die ich nicht wirklich verstehe, und ich würde mich über etwas Hilfe sehr freuen. Es geht um folgendes:


Die Modellierung der Auslenkung eines an seinen Enden fest gelagerten Balkens führt auf die (gewöhnliche) Randwertaufgabe

(1)       -u''(x) - [mm] (1+x^{2})u(x) [/mm] = 1      für x [mm] \in [/mm] (-1,1), u(-1) = u(1) = 0

Hierbei beschreibt u(x) die Auslenkung des Balkens im Punkt x [mm] \in [/mm] [-1,1]. Wir behandeln  hier zunächst eine 'abgespeckte' Version: gesucht ist eine Funktion u : [0,1] [mm] \to \IR [/mm] mit

(2)       -u''(x) + u(x) = 1          für x [mm] \in [/mm] (0,1), u(0) = u(1) = 0


Das als Vorweg-Infos. Nun soll ich zeigen, dass

u(x) = 1 + [mm] \bruch{\cosh(1) - 1}{\sinh(1)} \sinh(x) [/mm] - [mm] \cosh(x) [/mm]

eine exakte Lösung von (2) ist.

Icb stehe total auf dem Schlauch, ich weiß weder, was mit einer Auslenkung eines Balkens, der an den Enden fest gelagert ist, gemeint ist, noch wie genau u(x) aussieht, noch wie ich zeigen soll, dass das zuletzt angegebene eine exakte Lösung von (2) ist.


Ich wäre für jegliche Hilfe sehr dankbar!


(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)

        
Bezug
Randwertaufgabe: Hilfe!: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 So 17.12.2006
Autor: ullim


> Hallo,
>  
> ich habe hier eine ganz merkwürdige Aufgabe, die ich nicht
> wirklich verstehe, und ich würde mich über etwas Hilfe sehr
> freuen. Es geht um folgendes:
>  
>
> Die Modellierung der Auslenkung eines an seinen Enden fest
> gelagerten Balkens führt auf die (gewöhnliche)
> Randwertaufgabe
>  
> (1)       -u''(x) - [mm](1+x^{2})u(x)[/mm] = 1      für x [mm]\in[/mm]
> (-1,1), u(-1) = u(1) = 0
>  
> Hierbei beschreibt u(x) die Auslenkung des Balkens im Punkt
> x [mm]\in[/mm] [-1,1]. Wir behandeln  hier zunächst eine
> 'abgespeckte' Version: gesucht ist eine Funktion u : [0,1]
> [mm]\to \IR[/mm] mit
>  
> (2)       -u''(x) + u(x) = 1          für x [mm]\in[/mm] (0,1), u(0)
> = u(1) = 0
>  
>
> Das als Vorweg-Infos. Nun soll ich zeigen, dass
>  
> u(x) = 1 + [mm]\bruch{\cosh(1) - 1}{\sinh(1)} \sinh(x)[/mm] -
> [mm]\cosh(x)[/mm]
>  
> eine exakte Lösung von (2) ist.
>  
> Icb stehe total auf dem Schlauch, ich weiß weder, was mit
> einer Auslenkung eines Balkens, der an den Enden fest
> gelagert ist, gemeint ist, noch wie genau u(x) aussieht,
> noch wie ich zeigen soll, dass das zuletzt angegebene eine
> exakte Lösung von (2) ist.
>  

Das das gegebene u(x) eine exakte Lösung ist, kann man beweisen, indem man u''(x) bildet und in die DGL einsetzt. Erfüllt die Funktion auch noch die Randbedingungen, muss man nachprüfen, ist es eine exakte Lösung.

Mit der Auslenkung des Balkens ist seine Durchbiegung an beliebigen Punkten gemeint. Die DGL beschreibt, wie stark der Balken durchgebogen ist, also von der nicht durchgebogenen Form in jedem Punkt abweicht.

Anmerkung meinerseits: Für einen GK Mathematik Klasse 12 scheint mir diese Aufgabe etwas zu schwer, da meines Wissens Randwertprobleme von DGL erst im Mathe Studium 2./3. Semester behandel werden. Ist aber nur meine Meinung. Man muss sich auch noch was zur Eindeutigkeit der Lösung einfallen lassen, was wir hier gar nicht gemacht haben. Kannst ja mal Deinen Lehrer fragen.


> Ich wäre für jegliche Hilfe sehr dankbar!
>  
>
> (Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.)

Bezug
                
Bezug
Randwertaufgabe: Hilfe!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:43 So 17.12.2006
Autor: patb


> Das das gegebene u(x) eine exakte Lösung ist, kann man beweisen,
> indem man u''(x) bildet und in die DGL einsetzt.

Danke, das werde ich gleich einmal angehen.

> Mit der Auslenkung des Balkens ist seine Durchbiegung an beliebigen
> Punkten gemeint. Die DGL beschreibt, wie stark der Balken
> durchgebogen ist, also von der nicht durchgebogenen Form in jedem
> Punkt abweicht.

Ah natürlich, deswegen auch Randwertproblem, da der Balken an seinen Rändern ja fixiert ist, ist das so richtig?

> Anmerkung meinerseits: Für einen GK Mathematik Klasse 12 scheint mir
> diese Aufgabe etwas zu schwer, da meines Wissens Randwertprobleme
> von DGL erst im Mathe Studium 2./3. Semester behandel werden.

oh, das tut mir leid, mein Fehler... die Angabe in meiner Profil stimmt leider nicht ganz. Deine Vermutung ist ganz korrekt, dass es sich um eine Aufgabe aus dem Studium, 3. Semester handelt. Sorry, ich werde mein Profil nachher gleich ändern.

> Erfüllt die Funktion auch noch die Randbedingungen, muss man
> nachprüfen, ist es eine exakte Lösung.

Was sind denn die Randbedingungen und wie kann ich diese überprüfen?


Vielen Dank!

Bezug
                        
Bezug
Randwertaufgabe: Hilfe!: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 So 17.12.2006
Autor: ullim

Hi,

die Randbedienungen sind

[mm] x\in(0,1) [/mm] und u(0)=u(1)=0

D.h., man setzt 0 und 1 in die gegebene Lösung u(x) ein und überprüft ob jeweils 0 heraus kommt.

mfg ullim

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]