matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikRandverteilung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Stochastik" - Randverteilung
Randverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Randverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:28 Di 11.02.2014
Autor: DeSaarlaender

Aufgabe
X und Y haben die gemeinsame Dichte f(x; y) = 6, x [mm] \le [/mm] 0, y [mm] \le [/mm] 0, x+y < 1.
Finden Sie
a) die Marginalverteilungen von X und Y , sowie
b) die bedingte Dichte von X gegeben Y = y.

Ok, die a) wäre dann meiner Meinung nach [mm] f_X [/mm] = [mm] \integral_{0}^{1-y}{6 dx}=6-6y-0 [/mm] und äquivalent für [mm] f_Y [/mm] stimmt das so weit?

        
Bezug
Randverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:34 Di 11.02.2014
Autor: luis52


> X und Y haben die gemeinsame Dichte f(x; y) = 6, x [mm]\le[/mm] 0,
> y [mm]\le[/mm] 0, x+y < 1.
>  Finden Sie
>  a) die Marginalverteilungen von X und Y , sowie
>  b) die bedingte Dichte von X gegeben Y = y.
>  Ok, die a) wäre dann meiner Meinung nach [mm]f_X[/mm] =
> [mm]\integral_{0}^{1-y}{6 dx}=6-6y-0[/mm] und äquivalent für [mm]f_Y[/mm]
> stimmt das so weit?

Soll [mm] $f_X$ [/mm] die Dichte von $X$ sein?  Wieso haengt die dann von $y$ ab? Was ist wenn du $y=-6$ waehlst?

Fang noch einmal an:

[mm] $f_X(x)=\int_{-\infty}^{+\infty}f(x,y)\,dy=...$ [/mm]

Ueberlege dir, fuer welches $x$ hier etwas Sinnvolles herauskommt. Eine Skizze waere nicht schlecht.




Bezug
                
Bezug
Randverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:08 Di 11.02.2014
Autor: DeSaarlaender

Also  [mm] f_X(x)=\int_{-\infty}^{+\infty}f(x,y)\,dy= f_X(x)=\int_{-\infty}^{+\infty}6\,dy=[6y]^{ \infty}_{- \infty} [/mm] ... jetzt habe ich meine Grenzen eigesetzt die ja 0 und 1-x sind, also hätte ich 6-6x. Wo ist der Fehler? Kann ich dann einfach noch angeben 1< x < [mm] \wurzel{5/3}? [/mm] Dann passt auch das Ergebnis was rauskommen kann.

Bezug
                        
Bezug
Randverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:45 Di 11.02.2014
Autor: luis52


> Also  [mm]f_X(x)=\int_{-\infty}^{+\infty}f(x,y)\,dy= f_X(x)=\int_{-\infty}^{+\infty}6\,dy=[6y]^{ \infty}_{- \infty}[/mm]
> ... jetzt habe ich meine Grenzen eigesetzt die ja 0 und 1-x
> sind, also hätte ich 6-6x. Wo ist der Fehler? Kann ich
> dann einfach noch angeben 1< x < [mm]\wurzel{5/3}?[/mm] Dann passt
> auch das Ergebnis was rauskommen kann.

Um Himmels willen, nein! Hast du eine Skizze gemacht?


Bezug
                                
Bezug
Randverteilung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:54 Di 11.02.2014
Autor: DeSaarlaender

Von f(x,y)=6 ? Das ist einfach eine Ebene. Wenn ich davon das Integral von - bis + unendlich nehme habe ich dementsprechend unendlich viel Raum darunter ... Wenn ich die Grenzen für meine Marginaldichte [mm] f_X [/mm] so wähle wie beschrieben wäre der Raum = 1 so wie es für eine Dichte ja sein sollte.

Bezug
                                        
Bezug
Randverteilung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Do 13.02.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Randverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:22 Di 11.02.2014
Autor: blascowitz


> X und Y haben die gemeinsame Dichte f(x; y) = 6, x [mm]\le[/mm] 0,
> y [mm]\le[/mm] 0, x+y < 1.
>  Finden Sie
>  a) die Marginalverteilungen von X und Y , sowie
>  b) die bedingte Dichte von X gegeben Y = y.
>  Ok, die a) wäre dann meiner Meinung nach [mm]f_X[/mm] =
> [mm]\integral_{0}^{1-y}{6 dx}=6-6y-0[/mm] und äquivalent für [mm]f_Y[/mm]
> stimmt das so weit?

Stimmt die Aufgabe tatsächlich so? Ich denn für $x < 0$ und $y<0$
ist $x+y<1$ stets erfüllt und $f(x,y)$ ist keine Dichte. Das soll bestimmt [mm] $x\geq [/mm] 0$ und [mm] $y\geq [/mm] 0$ heißen, oder?

Viele Grüße
Blasco

Bezug
                
Bezug
Randverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:45 Di 11.02.2014
Autor: luis52


>
> Stimmt die Aufgabe tatsächlich so? Ich denn für [mm]x < 0[/mm] und
> [mm]y<0[/mm]
>  ist [mm]x+y<1[/mm] stets erfüllt und [mm]f(x,y)[/mm] ist keine Dichte. Das
> soll bestimmt [mm]x\geq 0[/mm] und [mm]y\geq 0[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

heißen, oder?


Ist mir gar nicht aufgefallen. Aber auch so ist der Wurm drin:

$\int_0^1}\int_0^{1-x}6\,dy\,dx=3$.

Froehliches Ratespiel: Wie lautet die Aufgabenstellung?

Bezug
                        
Bezug
Randverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:58 Di 11.02.2014
Autor: blascowitz

Hallo,

stimmt, das hatte ich dann wieder nicht nachgerechnet^^

Viele Grüße
Blasco

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]