matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenRand, Abschluss, Inneres best.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Reelle Analysis mehrerer Veränderlichen" - Rand, Abschluss, Inneres best.
Rand, Abschluss, Inneres best. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rand, Abschluss, Inneres best.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:29 Mi 12.05.2010
Autor: steppenhahn

Aufgabe
Bestimme Rand, Abschluss und Inneres der folgenden Teilmengen des [mm] \IR^{n}: [/mm]

[mm] $M_{1} [/mm] := [mm] \{x\in\IR^{n}:f(x) < 1\}$ [/mm]  mit $f(x) = [mm] \begin{cases}1,\quad x\in(-1,1)^{n}\\ 0, \quad\mbox{sonst}\end{cases}$ [/mm]

[mm] $M_{2}:= \{x\in\IR^{n}:g(x) \le 1\}$ [/mm] mit $g(x) = [mm] \frac{3}{2}-f(x)$. [/mm]

Hallo!

Folgendes habe ich mit gedacht:

[mm] M_{1} [/mm] müsste man doch auch so schreiben können:

[mm] $M_{1} [/mm] := [mm] \{x\in\IR^{n}:f(x) < 1\} [/mm] = [mm] \{x\in\IR^{n}:x\notin(-1,1)^{n}\} [/mm] = [mm] \{x\in\IR^{n}:||x||_{\infty} \ge 1 \} [/mm] = [mm] \IR^{n}\textbackslash K_{1}(0)$ [/mm] mit der Maximum-Norm.

Damit ist [mm] M_{1} [/mm] also gerade das Komplement von [mm] K_{1}(0) [/mm] und somit abgeschlossen.

--> Abschluss = [mm] M_{1} [/mm] selbst
--> Rand = Rand des Komplements = Rand von [mm] K_{1}(0) [/mm] = [mm] $\{x\in\IR^{n}:||x||_{\infty} = 1 \}$. [/mm]
--> Inneres = [mm] $\{x\in\IR^{n}:||x||_{\infty} > 1 \}$ [/mm]

Es müsste doch [mm] M_{2} [/mm] = [mm] K_{1}(0) [/mm] (bzgl. der Maximumsnorm) sein, oder?

Danke für Eure Hilfe!

Grüße,
Stefan

PS.: [mm] K_{1}(0) [/mm] ist die (offene) Kugel um 0 mit Radius 1.

        
Bezug
Rand, Abschluss, Inneres best.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:38 Do 13.05.2010
Autor: rainerS

Hallo Stefan!

> Bestimme Rand, Abschluss und Inneres der folgenden
> Teilmengen des [mm]\IR^{n}:[/mm]
>  
> [mm]M_{1} := \{x\in\IR^{n}:f(x) < 1\}[/mm]  mit [mm]f(x) = \begin{cases}1,\quad x\in(-1,1)^{n}\\ 0, \quad\mbox{sonst}\end{cases}[/mm]
>  
> [mm]M_{2}:= \{x\in\IR^{n}:g(x) \le 1\}[/mm] mit [mm]g(x) = \frac{3}{2}-f(x)[/mm].
>  
> Hallo!
>  
> Folgendes habe ich mit gedacht:
>  
> [mm]M_{1}[/mm] müsste man doch auch so schreiben können:
>  
> [mm]M_{1} := \{x\in\IR^{n}:f(x) < 1\} = \{x\in\IR^{n}:x\notin(-1,1)^{n}\} = \{x\in\IR^{n}:||x||_{\infty} \ge 1 \} = \IR^{n}\textbackslash K_{1}(0)[/mm]
> mit der Maximum-Norm.
>  
> Damit ist [mm]M_{1}[/mm] also gerade das Komplement von [mm]K_{1}(0)[/mm] und
> somit abgeschlossen.
>  
> --> Abschluss = [mm]M_{1}[/mm] selbst
>  --> Rand = Rand des Komplements = Rand von [mm]K_{1}(0)[/mm] =

> [mm]\{x\in\IR^{n}:||x||_{\infty} = 1 \}[/mm].
>  --> Inneres =

> [mm]\{x\in\IR^{n}:||x||_{\infty} > 1 \}[/mm]
>  
> Es müsste doch [mm]M_{2}[/mm] = [mm]K_{1}(0)[/mm] (bzgl. der Maximumsnorm)
> sein, oder?

Ja, das sieht gut aus.

> Danke für Eure Hilfe!
>  
> Grüße,
>  Stefan
>  
> PS.: [mm]K_{1}(0)[/mm] ist die (offene) Kugel um 0 mit Radius 1.

In der Maximumsnorm, oder auch der offene Würfel mit Schwerpunkt im Ursprung und Kantenlänge 2. ;-)

  Viele Grüße
    Rainer


Bezug
                
Bezug
Rand, Abschluss, Inneres best.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:53 Do 13.05.2010
Autor: steppenhahn

Hallo Rainer,

danke für deine Antwort (und Bestätigung ;-) )!

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]