"Ralley Aufgabe" ;) < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | 1 Werksteam = 3 Autos
- Wahrscheinlichkeit für 1 Defekt: 20% (pro Auto!)
--> P(1 Auto kommt durch) |
Gute "Nacht",
Also, was ich schon mal ganz vom Prinzip nicht verstehe ist, wie die Wahrscheinlichkeit für einen Defekt 20 % sein kann ??? Weil, es sind ja nur drei Autos das macht dann zusammen 60%, aber müsste alle Autos zusammen nicht 100% ergeben?
Und dann hat mein Lehrer uns die Aufgabe vorgerechnet, folgendermaßen:
B(3/80%/1) = [mm] 0,8^1*0,2^2*\bruch{(1*2*3)}{((1*2*3)*(3-1))} [/mm] = 0,096
So, ich glaube, er will auf die Urnenmethode 2 hinaus, das hat jedenfalls mein Nachhilfelehrer gesagt ;), und die habe ich jetzt auch schon gelernt und wollte die hier auch anwenden, aber irgendwie kriege ich dann was anderes raus....
Ich verstehe auch nicht, warum p=80% ist, müsste das nicht 20% sein? Und wenn er das abgezogen hat 100%-20% dann verstehe ich das, aber wie oben schon gesagt auch wieder nicht, denn 20*3=60 und nicht 100.....
LG HilaryAnn
|
|
|
|
Ich sag mal wie ich das sehe ;)
> 1 Werksteam = 3 Autos
> - Wahrscheinlichkeit für 1 Defekt: 20% (pro Auto!)
>
> --> P(1 Auto kommt durch)
> Gute "Nacht",
> Also, was ich schon mal ganz vom Prinzip nicht verstehe
> ist, wie die Wahrscheinlichkeit für einen Defekt 20 % sein
> kann ??? Weil, es sind ja nur drei Autos das macht dann
> zusammen 60%, aber müsste alle Autos zusammen nicht 100%
> ergeben?
Das eine hat mit dem anderen nix zu tun! Die eine Info ist, dass ein Werkteam 3 Autos (am Tag?) schafft. DIe andere ist, dass JEDES Auto eine Wahrscheinlichkeit von 20% hat, defekt zu sein! Also auch in einer großen Fabrik mit 100 Arbeitern und 10000 Autos am Tage hätte jedes Einzelne Auto eine Wahrscheinlichkeit von 20%, defekt zu sein, die Menge ist dabei egal.
>
> Und dann hat mein Lehrer uns die Aufgabe vorgerechnet,
> folgendermaßen:
>
> B(3/80%/1) = [mm]0,8^1*0,2^2*\bruch{(1*2*3)}{((1*2*3)*(3-1))}[/mm]
> = 0,096
>
Dies ist eine Bernoullikette, nur weiß ich nicht, ob ihr das schon habt? Also wenn ja, dann folgendes:
Die Wahrscheinlichkeit für einen Defekt lautet p=0,2 Nun gibt es genau 3 Autos, also ist n=3. Zudem ist die Anzahl k der defekten Autos, die wir suchen gleich 2, denn nur eines soll durchkommen, also gilt eine Bernoullikette mit den Parametern
$ [mm] B(3;0,5;2)=\vektor{3 \\ 2}\*0,2^2\*0,8 [/mm] $
Dies gibt besagte 0,096. Ist doch eine recht logische Formel oder? An sich kannst du es auch so machen:
Wir interessieren uns für einen Dreiertupel bestehend aus [mm] {DD\overline{D}}, [/mm] also zwei defekte Autos D und ein ganzes.
DIe Wahrscheinlichkeit für einen beliebigen Tupel beträgt? Wir brauchen die Wahrscheinlichkeit für zwei kaputte und ein ganzes. Wichtig ist, dass die Wahrscheinlichkeiten unabhängig voneinander sind! Das heißt, es ist egal, ob defekt oder nicht defekt eintritt, jedes Auto hat die selbe Wahrscheinlichkeit. Damit muss die Wahrscheinlichkeit für [mm] {DD\overline{D}} [/mm] 0,2*0,2*0,8 lauten. Was jetzt noch fehlt ist die Berücksichtigung der Reihenfolge. Im Moment berechnen wir nur die Wahrscheinlichkeit für genau einen Fall, das ganze Auto kann aber an jeder der drei Stellen stehen, also müssen wir die Gesamtwahrscheinlichkeit noch mit 3 multiplizieren!
Mathematisch ist es aber dasselbe wie 3 über 1 (oder 2!), denn wenn man wissen möchte, wie sich k Elemente auf n Plätze verteilen, so lässt sich dies mithilfe des Binomialkoeffizienten n über k berechnen. 3 über 1 bedeutet also:
$ [mm] \vektor{3 \\ 1}=\bruch{3!}{(3-1)!*1!}=\bruch{1*2*3}{1*2*1}=\bruch{3}{1}=3 [/mm] $
> So, ich glaube, er will auf die Urnenmethode 2 hinaus, das
> hat jedenfalls mein Nachhilfelehrer gesagt ;), und die habe
> ich jetzt auch schon gelernt und wollte die hier auch
> anwenden, aber irgendwie kriege ich dann was anderes
> raus....
> Ich verstehe auch nicht, warum p=80% ist, müsste das nicht
> 20% sein? Und wenn er das abgezogen hat 100%-20% dann
> verstehe ich das, aber wie oben schon gesagt auch wieder
> nicht, denn 20*3=60 und nicht 100.....
> LG HilaryAnn
>
|
|
|
|