matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAstronomieRaketenbahnen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Astronomie" - Raketenbahnen
Raketenbahnen < Astronomie < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Astronomie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Raketenbahnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:07 Mo 15.12.2008
Autor: helpme110

Hallo,
wir haben heute mit Raketenbahnen angefangen, aber ich habe das überhaupt nicht verstanden, wir haben nur ein paar Formeln aufgeschrieben und im Buch steht gar nichts drin. Wir sind von der potentiellen Energie ausgehend schließlich irgendwie zur Gleichung
E _{pot(r)}= [mm] -\bruch{G*M*m}{r} [/mm] gekommen. Aber was bedeutet die potentielle Energie genau, denn wir haben ständig mit [mm] E_{pot(r)} [/mm] und [mm] E_{pot(\infty)} [/mm] gerechnet???
Danke euch schon im Voraus,

mfg helpme

        
Bezug
Raketenbahnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Di 16.12.2008
Autor: leduart

Hallo helpme
ptentielle Energie hat immer einen willkürlichen Bezugspunkt. Bei der Gravitation legt man den immer ins unendliche, d.h. die pot Energie ist im unendlichen (in Wirklichkeit für risige Abstände) 0

Um die pot. Energie einer Masse m im Abstand R von dem Massenmittelpunkt von M zu berechnen, muss man also die Arbeit ausrechnen, um ihn von R nach unendlich zu transportieren.
Dabei kommt dann das positive deines Ausdrucks raus.
gegenüber [mm] \infty [/mm] haben also alle Massen negative potentielle Energie.
Wenn du also etwa eine masse M von der Erde weg transportieren willst  also von r1 nach r2 mit r2>r1
dann brauchst du die Energiedifferenz
$ [mm] -\bruch{G\cdot{}M\cdot{}m}{r2}+\bruch{G\cdot{}M\cdot{}m}{r1} [/mm] $
umgekehrt bekommst du wenn du einen Körper von r2>r1 nach r1 "fallen" lässt diese Energie als kinetische Energie zurück.
War das deine Frage oder gings um die Rechnung, mit der man das ausrechnet? Dann frag noch mal und sag, was du noch verstanden hast.

Gruss leduart

Bezug
                
Bezug
Raketenbahnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Di 16.12.2008
Autor: helpme110

Hallo leduart,
ich habe den genauen Rechenweg, wie man auf [mm] E_{pot(r)})=-\bruch{G*M*m}{r} [/mm] kommt, noch nicht ganz verstanden. Könntest du mir das vielleicht mal vorrechnen?

mfg helpme

Bezug
                        
Bezug
Raketenbahnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 Di 16.12.2008
Autor: Event_Horizon

Hallo!


Ich versuche das mal einfach zu erklären:

Es gibt eine Gravitationskraft zwischen zwei Massen. Diese Kraft ist sowohl proportional zur Masse des einen Körpers, als auch proportional zur Masse des anderen:

[mm] $F\sim [/mm] m$

[mm] $F\sim [/mm] M$

Macht zusammen:

[mm] $F\sim [/mm] m*M$

Jetzt hast du sicher schon den Begriff der Feldlinien gehört. Diese Linien beschreiben das Gravtitationsfeld einer Masse, und alle anderen Massen werden entlang dieser Linien zu der ersten Masse hingezogen.
Dann weißt du sicher auch z.B. vom Magnetismus, daß das Feld bzw damit die KRaft dort besonders stark ist, wo besonders viele Linien auf engem Raum verlaufen.

In unserem Fall laufen die Feldlinien aus allen Richtungen auf die eine Masse zu.

Angenommen, es gibt eine hypothetische Anzahl an Feldlinien, und deine Masse läge im Zentrum verschiedener Kugeln unterschiedlicher Radien. Dann kannst du aus dem Radius der Kugeln berechnen, wie groß die Dichte der Feldlinien auf der Oberfläche der Kugeln ist ("wieviele Linien pro cm²" es gibt), es gilt dann ja [mm] \rho=\frac{n}{A}=\frac{n}{4\pi r^2} [/mm]

Diese Dichte ist auch ein Maß für die Starke der Kraft in einer bestimmten Entfernung, und damit bekommst du:

[mm] F\sim\frac{1}{r^2} [/mm]

und alles zusammen:

[mm] F\sim\frac{m*M}{r^2} [/mm]

Jetzt noch ne Konstante eingeführt, und du hast das Gravitationsgesetz:
[mm] F=\gamma\frac{m*M}{r^2} [/mm]

Jetzt weißt du, daß Energie gleich Kraft mal weg ist. Man kann das hier nicht so einfach berechnen, weil die Kraft nicht konstant ist. Es gilt [mm] E=\int_A^B\gamma\frac{m*M}{r^2}\,dr=\gamma\frac{m*M}{B}-\gamma\frac{m*M}{A} [/mm] . Aber zumindest an den Einheiten kannst du nun erkennen, daß das ganze stimmt...

Die Formel [mm] E=\gamma\frac{m*M}{B}-\gamma\frac{m*M}{A} [/mm] gibt dir nun an, wie die Energiedifferenz aussieht, wenn du den einen Körper von der Entfernung A auf die Entfernung B bringst.

Jetzt nur noch eine wichtige Sache: Man legt die Entfernung B ins Unendliche, dann ist der zugehörige Term =0, und man hat nur noch [mm] -\gamma\frac{m*M}{A} [/mm] . Das ist die Energie, die die eine Masse hat. Du siehst, die Energie ist negativ. Du mußt Energie reinstecken, um die Masse weiter weg zu bringen.
Der Trick an der Sache ist nun, wenn du eine weitere Energie zur Verfügung hast (kinetische Energie z.B.), kannst du beide zusammanaddieren. Ist die summe=0 oder gar größer, reicht das, um die Masse ins Unendliche zu befördern, man spricht dann davon, daß das Teilchen dem Gravitationseinfluß entkommen kann.

Bezug
                                
Bezug
Raketenbahnen: danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:43 Di 16.12.2008
Autor: helpme110

Okay, glaube ich habs endlich kapiert, vielen Dank!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Astronomie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]